Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A proper selection of steam reforming catalyst geometry has a direct effect on the efficiency and economy of hydrogen production from natural gas and is a very important technological and engineering issue in terms of process optimisation. This paper determines the influence of widely used seven-hole grain diameter (ranging from 11 to 21 mm), h/d (height/diameter) ratio of catalyst grain and Sh/St (hole surface/total cylinder surface in cross-section) ratio (ranging from 0.13 to 0.37) on the gas load of catalyst bed, gas flow resistance, maximum wall temperature and the risk of catalyst coking. Calculations were based on the one-dimensional pseudo-homogeneous model of a steam reforming tubular reactor, with catalyst parameters derived from our investigations. The process analysis shows that it is advantageous, along the whole reformer tube length, to apply catalyst forms of h/d = 1 ratio, relatively large dimensions, possibly high bed porosity and Sh/St ≈ 0.30-0.37 ratio. It enables a considerable process intensification and the processing of more natural gas at the same flow resistance, despite lower bed activity, without catalyst coking risk. Alternatively, plant pressure drop can be reduced maintaining the same gas load, which translates directly into diminishing the operating costs as a result of lowering power consumption for gas compression.
Czasopismo
Rocznik
Tom
Strony
239--250
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- New Chemical Syntheses Institute (INS), Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
autor
- New Chemical Syntheses Institute (INS), Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
autor
- New Chemical Syntheses Institute (INS), Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
- Maria Curie-Skłodowska University (UMCS), Faculty of Chemistry, Department of Chemical Technology, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
autor
- New Chemical Syntheses Institute (INS), Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
autor
- New Chemical Syntheses Institute (INS), Al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
Bibliografia
- 1. Borowiecki T., Gołębiowski A., 2005. Modern synthesis gas and hydrogen plants. Przem. Chem., 84, 503-507.
- 2. Christiansen J., 1970. Numerical solution of ordinary simultaneous differential equations of the 1st order using a method for automatic step change. Numer. Math., 14, 317-324. DOI: 10.1007/BF02165587.
- 3. Dukowicz J.W., 1994. Estimation of thermodynamic properties of gaseous systems in ammoniatechnology with application of selected state equations. PhD thesis. Wrocław University of Technology (in Polish).
- 4. Ferreira-Aparicio P., Benito M.J., Sanz J.L., 2005. New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers. Catal. Rev., 47, 491-588. DOI: 10.1080/01614940500364958.
- 5. Franczyk E., Michalska K., Prokop U., Stołecki K., Wróbel W., 2009. Deactivation of steam reforming catalysts under industrial conditions. Przem. Chem., 88, 878-881.
- 6. Gołębiowski A., Kowalik P., Stołecki K., Narowski R., Kruk J., Prokop U., Mordecka Z., Dmoch M., Jesiołowski J., Śpiewak Z., 2009. Industrial catalyst technologies developed by INS Puławy. Fifty years of experience. Przem. Chem., 88, 1284-1290.
- 7. Gołębiowski A., Stołecki K., 1977. Differentialreaktor für kinetische Untersuchungen katalytischer Reaktionen. Chem. Techn., 29, 454-456.
- 8. Holladay J.D., Hu J., King D.L., Wang Y., 2009. An overview of hydrogen production technologies. Catal. Today, 139, 244-260. DOI: 10.1016/j.cattod.2008.08.039.
- 9. Leva M., 1947. Heat transfer to gases through packed tubes. Ind. Eng. Chem., 39, 857-862. DOI: 10.1021/ie50451a014.
- 10. Michel M., 2007. Steam reforming – the next generation of catalysts. Materials of the Nitrogen&Syngas International Conference & Exhibition. Bahrain, 25-28 February 2007, 55-59.
- 11. Peña M.A., Gómez J.P., Fierro J.L.G., 1996. New catalytic routes for syngas and hydrogen production. Appl. Catal. A, 144, 7-57. DOI: 10.1016/0926-860X(96)00108-1.
- 12. Rostrup-Nielsen J.R., 1984. Catalytic steam reforming, In: Anderson J.R., Boudart M. (Eds.), Catalysis - science and technology. Vol.5. Springer-Verlag, Berlin. DOI: 10.1007/978-3-642-93247-2_1.
- 13. Rostrup-Nielsen J., Christiansen L.J., 2011. Concepts in Syngas Manufacture, In: Hutchings G.J. (Ed.), Catalytic Science Series. Vol.10. Imperial College Press, London. DOI: 10.1142/9781848165687.
- 14. Schmidt + Clemens Group. Spun casting - Petrochemical industry. One group - One expertise. High alloys for the petrochemical industries. Retrieved September 11, 2014, from: http://www.schmidtclemens.com/fileadmin/web_images/Broschueren/SC_SpunCasting_Petro_08-2010_ENG.pdf.
- 15. Shumake G., Coleman A., 2007. Optimize your hydrogen plant operations. Hydrocarb. Process., 9, 153-158.
- 16. Wu D., Zhou J., Li Y., 2007. Mechanical strength of solid catalysts: recent developments and future prospects. AIChE Journal, 53, 2618-2629. DOI: 10.1002/aic.11291.
- 17. Yu Z., Cao E., Wang Y., Zhou Z., Dai Z., 2006. Simulation of natural gas steam reforming furnace. Fuel Process. Technol., 87, 695-704. DOI: 10.1016/j.fuproc.2005.11.008.
- 18. Ziółkowski D., Legawiec B., Tobiś J., 1982a. Over-all heat transfer coefficient at the gas stream heating by the wall of a tubular apparatus packed with a static granular bed. Inż. Chem. Proc., 3, 765-778.
- 19. Ziółkowski D., Pomarański J., Moszyński J., 1980. A mathematical model of a unit reactor pipe for catalytic conversion of methane by water steam. I. Formulation of the model. Inż. Chem. Proc., 1, 655-668.
- 20. Ziółkowski D., Pomarański J., Żernik Z., 1982b. Experimental verification in pilot scale of a mathematical model of a unit pipe reactor for catalytic conversion of methane by water vapour. Inż. Chem. Proc., 3, 429-446.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9ac876c-8f8d-4316-b6ac-bb34bbb7a1e8