PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of essential oils on in vitro growth of fungi Cladobotryum dendroides and Mycogone perniciosa infecting button mushroom

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the studies was to investigate the effect of camel grass, lavender, patchouli, peppermint and tea tree essential oils, and their mixtures on the in vitro growth of pathogenic fungi Cladobotryum dendroides and Mycogone perniciosa, occurring in the cultivation of button mushroom (Agaricus bisporus). The mycelial growth of the tested pathogens was evaluated on PDA medium. Essential oils were added in three doses: 0.25; 0.5 and 1 mg·cm–3 of PDA medium. Camel grass and peppermint essential oils applied at the highest dose inhibited completely the in vitro growth of C. dendroides mycelium. Lavender oil used at the amount of 1 mg·cm–3 reduced the growth of the pathogen by 90 %. In the case of M. perniciosa the complete inhibition of the pathogen’s growth was observed after the addition of camel grass oil to PDA medium, irrespective of a dose, and lavender oil at the doses of 0.5 and 1 mg·cm–3. The efficacy of the tested mixtures against M. perniciosa was high. Generally, all mixtures of essential oils, irrespective of a dose, completely controlled the growth of the pathogen. The complete inhibition of the growth of C. dendroides was observed only on the medium with the addition of the mixture of camel grass and peppermint oils at the highest dose. The conducted research showed that natural essential oils due to their antifungal properties could be useful in the Integrated Disease Management for the protection of button mushroom against diseases. They could be an effective alternative to synthetic chemical fungicides.
Rocznik
Strony
411--427
Opis fizyczny
Bibliogr. 63 poz., tab., fot.
Twórcy
  • Department of Entomology and Environmental Protection, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 336
autor
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 382
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 382
  • Department of Phytopathology, Seed Science and Technology, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland, phone +48 618 466 382
  • Department of Vegetable Crops, Poznań University of Life Sciences, ul. J.H. Dąbrowskiego 159, 60-594 Poznań, Poland
Bibliografia
  • [1] Potočnik I, Vukojević J, Stajić M, Rekanović E, Stepanović M, Milijašević S, Todorović B. Toxicity of biofungicide Timorex 66 EC to Cladobotryum dendroides and Agaricus bisporus. Crop Prot. 2010;29:290-4. DOI: 10.1016/j.cropro.2009.07.016.
  • [2] Potočnik I, Vukojević J, Stajić M, Tanović B, Rekanović E. Sensitivity of Mycogone perniciosa, pathogen of culinary-medicinal button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetidae), to selected fungicides and essential oils. Int J Med Mushrooms. 2010;12(1):91-8. DOI: 10.1615/IntJMedMushr.v12.i1.90.
  • [3] Carrasco J, Navarro MJ, Santos M, Diánez F, Gea FJ. Identification, incidence and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Ann Appl Biol. 2016;168:214-24. DOI: 10.1111/aab.12257.
  • [4] Szumigaj-Tarnowska J, Ślusarski C, Uliński Z. Pathogenicity of Mycogone perniciosa isolates collected on Polish mushroom farms. J Hortic Res. 2015;23(1):87-92. DOI: 10.2478/johr-2015-0011.
  • [5] Zhang CL, Xu JZ, Kakishima M, Li Y. First report of wet bubble disease caused by Hypomyces perniciosus on Pleurotus citrinopileatus in China. Plant Dis. 2017;101(7):1321xc. DOI: 10.1094/PDIS-02-17-0179-PDN.
  • [6] Gea FJ, Navarro MJ, Santos M, Diánez F, Carrasco J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms. 2021;9:585-608. DOI: 10.3390/microorganisms9030585.
  • [7] Tamm H, Põldmaa K. Diversity, host associations and phylogeography of temperate aurofusarin-producing Hypomyces/Cladobotryum including causal agents of cobweb disease of cultivated mushrooms. Fungal Biol. 2013;117:348-67. DOI: 10.1016/j.funbio.2013.03.005.
  • [8] Carrasco J, Navarro MJ, Gea FJ. Cobweb, a serious pathology in mushroom crops: A review. Span J Agri Res. 2017;15(2):e10R01. DOI: 10.5424/sjar/2017152-10143.
  • [9] Chakwiya A, Van der Linde EJ, Chidamba L, Korsten L. Diversity of Cladobotryum mycophilum isolates associated with cobweb disease of Agaricus bisporus in the south African mushroom industry. Eur J Plant Pathol. 2019;154:767-76. DOI: 10.1007/s10658-019-01700-7.
  • [10] Adie B, Grogan H, Archer S, Mills P. 2006. Temporal and spatial dispersal of Cladobotryum conidia in the controlled environment of a mushroom growing room. Appl Environ Microbiol. 2006;72:7212-7. DOI: 10.1128/AEM.01369-06.
  • [11] Potočnik I, Stepanović M, Rekanović E, Todorović B, Milijašević-Marčić S. Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake. Pestic Phytomed. (Belgrade) 2015;30(4):201-8. DOI: 10.2298/PIF1504201P.
  • [12] Potočnik I, Todorović B, Đurović-Pejčev R, Stepanović M, Rekanović E, Milijašević-Marčić S. Antimicrobial activity of biochemical substances against pathogens of cultivated mushrooms in Serbia. Pestic Phytomed (Belgrade). 2016;31(1-2):19-27. DOI: 10.2298/PIF1602019P.
  • [13] Sales MDC, Costa HB, Fernandes PMB, Ventura JA, Meira DM. Antifungal activity of plant extracts with a potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed. 2016;6:26-31. DOI: 10.1016/j.apjtb.2015.09.026.
  • [14] Moghaddam M., Mehdizadeh L. Chapter 13 - Chemistry of essential oils and factors influencing their constituents. In: Grumezescu AM, Holban AM, editors. Soft Chemistry and Food Fermentation. Handbook of Food Bioengineering. Vol. 3. Elsevier Inc. 2017: 379-419. ISBN: 9780128114124. DOI: 10.1016/B978-0-12-811412-4.00013-8.
  • [15] Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food Chem Toxicol. 2008;4:446-75. DOI: 10.1016/j.fct.2007.09.106.
  • [16] Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils - Present status and future perspectives. Medicines. 2017;4(3):58. DOI: 10.3390/medicines4030058.
  • [17] Shuping DSS, Eloff JN. The use of plants to protect plants and food against fungal pathogens: A review. Afr J Tradit Compl Altern Med. 2017;14:120-7. DOI: 10.21010/ajtcam.v14i4.14.
  • [18] Regnier T, Combrinck S. In vitro and in vivo screening of essential oils for the control of wet bubble disease of Agaricus bisporus. S Afr J Bot. 2010;76:681-5. DOI: 10.1016/j.sajb.2010.07.018.
  • [19] Voda K, Boh B, Vrtačnik M, Pohleven F. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int Biodeter Biodegr. 2003;51:51-9. DOI: 10.1016/S0964-8305(02)00075-6.
  • [20] Adam K, Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. Antifungal activity of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia and Salvia fruticosa essential oils against human pathogenic fungi. J Agric Food Chem. 1998;46:1739-45. DOI: 10.1021/jf9708296.
  • [21] Soković M, Vukojević J, Marin P, Brkić D, Vajs V, van Griensven LJLD. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14:238-49. DOI: 10.3390/molecules14010238.
  • [22] Kamatou GPP, Vermaak I, Viljoen AM, Lawrence BM. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry. 2013;96:15-25. DOI: 10.1016/j.phytochem.2013.08.005.
  • [23] Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics. 2010;10(5):1040-9. DOI: 10.1002/pmic.200900568.
  • [24] Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addition of thymol, carvacrol, limonene, cinnamaldehyde and eugenol in the growing media. J Agric Food Chem. 2006;54(7):2745-9. DOI: 10.1021/jf052722l.
  • [25] La Storia A, Ercolini D, Marinello F, Di Pasqua R, Villani F, Mauriello G. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res Microbiol. 2011;162(2):164-72. DOI: 10.1016/j.resmic.2010.11.006.
  • [26] Arfa AB, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol. 2006;43(2):149-54. DOI: 10.1111/j.1472-765X.2006.01938.x.
  • [27] Veldhuizen EJA, Tjeerdsma-van Bokhoven JLM, Zweijtzer C, Burt SA, Haagsman HP. Structural requirements for the antimicrobial activity of carvacrol. J Agric Food Chem. 2006;54(5):1874-9. DOI: 10.1021/jf052564y.
  • [28] Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies and interactions with food matrix components. Front Microbiol. 2012;3:1-24. DOI: 10.3389/fmicb.2012.00012.
  • [29] Patwardhan B, Vaidya DB, Chorghade M, Joshi SP. Reverse pharmacology and systems approaches for drug discovery and development. Curr Bioact Compd. 2008;4(4):201-12. DOI: 10.2174/157340708786847870.
  • [30] Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 2007;55(12):4863-70. DOI: 10.1021/jf0636465.
  • [31] Ait-Ouazzou A, Cherrat L, Espina L, Lorán S, Rota C, Pagán R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innov Food Sci Emerg Technol. 2011;12(3):320-9. DOI: 10.1016/j.ifset.2011.04.004.
  • [32] Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005;49(6):2474-8. DOI: 10.1128/AAC.49.6.2474-2478.2005.
  • [33] Espina L, Somolinos M, Lorán S, Conchello P, García D, Pagán R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control. 2011;22(6):896-902. DOI: 10.1016/j.foodcont.2010.11.021.
  • [34] De Souza EL, De Barros JC, De Oliveira CEV, Da Conceição ML. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. Int J Food Microbiol. 2010;137(2-3):308-11. DOI: 10.1016/j.ijfoodmicro.2009.11.025.
  • [35] Pérez-Fons L, Aranda FJ, Guillén J, Villalaín J, Micol V. Rosemary (Rosmarinus officinalis) diterpenes affect lipidpolymorphism and fluidity in phospholipid membranes. Arch Biochem Biophys. 2006;453(2):224-36. DOI: 10.1016/j.abb.2006.07.004.
  • [36] Horváth G, Kovács K, Kocsis B, Kustos I. Effect of thyme (Thymus vulgaris L.) essential oil and its main constituents on the outer membrane protein composition of Erwinia strains studied with microfluid chip technology. Chromatographia. 2009;70(11-12):1645-50. DOI: 10.1365/s10337-009-1374-7.
  • [37] Silva F, Ferreira S, Duarte A, Mendonça DI, Domingues FC. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine. 2011;19(1):42-7. DOI: 10.1016/j.phymed.2011.06.033.
  • [38] Silva F, Ferreira S, Queiroz JA, Domingues FC. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol. 2011;60(Pt 10):1479-86. DOI: 10.1099/jmm.0.034157-0.
  • [39] Hafedh H, Fethi BA, Mejdi S, Emira N, Amina B. Effect of Mentha longifolia L. ssp. longifolia essential oil on the morphology of four pathogenic bacteria visualized by atomic force microscopy. Afr J Microbiol Res. 2010;4(11):1122-7. Avalaible from: https://academicjournals.org/journal/AJMR/article-full-textpdf/CAFD35F13401.
  • [40] Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;19(1):150-62. DOI: 10.1128/CMR.19.1.50-62.2006.
  • [41] Hammer KA, Carson CF, Riley TV. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J Antimicrob Chemother. 2004;53(6):1081-5. DOI: 10.1093/jac/dkh243.
  • [42] Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem. 2017;234:62-7. DOI: 10.1016/j.foodchem.2017.04.172.
  • [43] Lee J, Seo S, Huh LS, Park I. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. Pestic Biochem Physiol. 2020;168:104644. DOI: 10.1016/j.pestbp.2020.104644.
  • [44] Inouye S, Watanabe M, Nishiyama Y, Takeo K, Akao M, Yamaguchi H. Antisporulating and respirationinhibitory effects of essential oils on filamentous fungi. Mycoses. 1998;41:403-10. DOI: 10.1111/j.1439-0507.1998.tb00361.x.
  • [45] Geősel A, Szabó A, Akan O, Szarvas J. Effect of essential oil on mycopathogens of Agaricus bisporus. Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, India, 19-22 November 2014: 530-5. Avalaible from: https://www.researchgate.net/publication/268815181_Effect_of_essential_oils_on_mycopathogens_of_Agaricus_bisporus.
  • [46] Diánez F, Santos M, Parra C, Navarro MJ, Blanco R, Gea FJ. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Lett Appl Microbiol. 2018;67(4):400-10. DOI: 10.1111/lam.13053.
  • [47] Todorović B, Potočnik I, Rekanović E, Stepanović M, Kostić M, Ristić M, et al. Toxicity of twenty-twoplant essential oils against pathogenic bacteria of vegetables and mushrooms. J Environ Sci Health B. 2016;51(12):832-9. DOI: 10.1080/03601234.2016.1208462.
  • [48] Andila PS, Hendra IPA, Wardani PK, Tirta IG, Sutomo, Fardenan D. The phytochemistry of Cymbopogon winterianus essential oil from Lombok Island, Indonesia and its antifungal activity against phytopathogenic fungi. Nus Biosci. 2018;10:232-9. DOI: 10.13057/nusbiosci/n1004xx.
  • [49] Cavalcanti AL, Aguiar YPC, Santos FGD, Cavalcanti AFC, Dias De Castro R. Susceptibility of Candida albicans and Candida non-albicans strains to essential oils. Biomed Pharmacol J. 2017;10:1101-7. DOI: 10.13005/bpj/1209.
  • [50] Amornvit P, Choonharuangdej S, Srithavaj T. Lemongrass-incorporated tissue conditioner against Candida albicans culture. J Clin Diagn Res. 2014;8(7):ZC50-2. DOI: 10.7860/JCDR/2014/8378.4607.
  • [51] Tanović B, Potočnik I, Delibašić G, Ristić M, Kostić M, Marković M. In vitro effect of essential oils from aromatic and medicinal plants on mushroom pathogens: Verticillium fungicola var. fungicola, Mycogone perniciosa, and Cladobotryum sp. Arch Biol Sci. Belgrade 2009;61(2):231-8. DOI: 10.2298/ABS0901231T.
  • [52] Gea FJ, Navarro MJ, Santos M, Diánez F, Herraiz-Peñalver D. Screening and evaluation of essential oils from Mediterranean aromatic plants against the mushroom cobweb disease, Cladobotryum mycophilum. Agronomy. 2019;9(10):656-69. DOI: 10.3390/agronomy9100656.
  • [53] Tanović B, Potočnik I, Stanisavljević B, Đorđević M, Rekanović E. Response of Verticillium fungicola var. fungicola, Mycogone perniciosa and Cladobotyum sp. mushroom pathogens to some essential oils. Pestic Phytomed. (Belgrade) 2006;21:231-7. Avalaible from: https://scindeks-clanci.ceon.rs/data/pdf/0352-9029/2006/0352-90290603231T.pdf.
  • [54] Das P, Dutta S, Begum J, Anwar MN. Antibacterial and antifungal activity analysis of essential oil of Pogostemon cablin (Blanco) Benth. Bangladesh J Microbiol. 2013;30(1-2):7-10. DOI: 10.3329/bjm.v30i1-2.28446.
  • [55] Kocevski D, Du M, Kan J, Jing C, Lačanin I, Pavlović H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. J Food Sci. 2013;78:M731-7. DOI: 10.1111/1750-3841.12118.
  • [56] Karimi A. Characterization and antimicrobial activity of patchouli essential oil extracted from Pogostemon cablin [Blanco] Benth. [Lamiaceae]. Adv Environ Biol. 2014;8(7):2301-9. Avalaible from: http://www.aensiweb.com/old/aeb/2014/2301-2309.pdf.
  • [57] Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 2002;68(4):1561-8. DOI: 10.1128/AEM.68.4.1561-1568.2002.
  • [58] Radulović NS, Blagojević PD, Stojanović-Radić ZZ, Stojanović NM. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr Med Chem. 2013;20:932-52. DOI: 10.2174/0929867311320070008.
  • [59] Nikkah M, Hashemi M, Najafi M, Farhoosh R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int J Food Microbiol. 2017;18(257):285-94. DOI: 10.1016/j.ijfoodmicro.2017.06.021.
  • [60] Hossain F, Follett P, Dang Vu K, Harich M, Salmieri S, Lacroix M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 2016;53(Pt B):24-30. DOI: 10.1016/j.fm.2015.08.006.
  • [61] Purkait S, Bhattacharya A, Bag A, Chattopadhyay RR. Synergistic antibacterial, antifungal and antioxidant efficacy of cinnamon and clove essential oils in combination. Arch Microbiol. 2020;202:1439-48. DOI: 10.1007/s00203-020-01858-3.
  • [62] Lee J, Beuchat L, Kim H, Kim Y. Synergistic antimicrobial activity of oregano and thyme thymol essential oils against Leuconostoc citreum in a laboratory medium and tomato juice. Food Microbiol. 2020;90:103489. DOI: 10.1016/j.fm.2020.103489.
  • [63] Ayari S, Shankar S, Follett P, Hossain F, Lacroix M. Potential synergistic antimicrobial efficiency of binary combinations of essential oils against Bacillus cereus and Paenibacillus amylolyticus - Part A. Microb Pathog. 2020;141:104008. DOI: 10.1016/j.micpath.2020.104008.
Uwagi
1. The publication was co-financed within the framework of the Ministry of Science and Higher Education program as “Regional Initiative Excellence” in 2019-2022, Project No. 005/RID/2018/19, financing amount: 12,000,000 PLN.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9aa5079-4556-48b0-bcf5-2e381c6b94d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.