PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of hybrid PDM-4QAM-OFDM for inter-satellite/mechatronic telecommunication using FSO system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the designing and simulation of 400 Gbps polarisation division multiplexingquadrature amplitude modulation-orthogonal frequency division multiplexing (PDM- 4QAM-OFDM)-based inter-satellite optical wireless communication (IsOWC)/mechatronic telecommunication system for improving the link information carrying capacity was carried out. With quadrature amplitude modulation (QAM) encoding, the performance of the executed system has been addressed using metrics such as signal to noise ratio (SNR) and total received power (RP). The performance with suggested system has been examined in relation to the effects of various factors such as operating wavelength, transmission power, and receiving pointing error angle. Moreover, a better identification method for improving connection reach between mechatronic devices/satellites has been revealed in this study. A performance comparison of the proposed system with other implemented approaches has been made in the final step.
Rocznik
Strony
art. no. e147036
Opis fizyczny
Bibliogr. 25 poz., rys., wykr., tab.
Twórcy
  • I. K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India
  • Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana, 141006, Punjab, India
  • Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana, 141006, Punjab, India
autor
  • Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana, 141006, Punjab, India
Bibliografia
  • [1] Koepf, G. A., Marshalek, R. G. & Begley, D. L. Space laser communications: A review of major programs in the United States. Int. J. Electron. Commun. 56, 232-242 (2002). https://doi.org/10.1078/1434-8411-54100103
  • [2] Sotom, M., Benazet, B., Le Kernec, A. & Maignan, M. Microwave Photonic Technologies For Flexible Satellite Telecom Payloads. in Proc. of the 35th European Conference on Optical Communication (ECOC) 1-17 (Thales Alenia Space, 2009). http://conference.vde.com/ecoc-2009/programs/documents/michel_sotom.pdf
  • [3] Karim, A. & Devenport, J. Optimization of linearity figure of merit for microwave photonic links. IEEE Photon. Technol. Lett. 21, 950-952 (2009). https://doi.org/10.1109/LPT.2009.2021072
  • [4] Vinayak, N. & Gupta, A. Comparative analysis of WDM system using cascaded amplifiers in optical wireless channel over a distance of 10000 km. SOP Trans. Signal Process. 1, 25-32 (2014).
  • [5] Hashim, A. H., Mahad, F. D., Idrus, S. M. & Supa’at, A. S. M. Modeling and Performance Study of Inter-Satellite Optical Wireless Communication System. in Proceedings of the IEEE Interna tional Conference on Photonics (ICP) 1-4 (IEEE, 2010). https://doi.org/10.1109/ICP.2010.5604379
  • [6] Kumar, N. & Rana, D. R. Enhanced performance analysis of Inter- Aircraft Optical-Wireless Communication (IaOWC) system. Optik 125, 486-488 (2014). https://doi.org/10.1016/j.ijleo.2013.07.020
  • [7] Ganga, S.S., Asha, R. S. & Shaija, P. J. Design of a standardized inter satellite optical wireless communication (IsOWC) system with minimum input power. Proc. Technol. 25, 567-573 (2016). https://doi.org/10.1016/j.protcy.2016.08.146
  • [8] Heine, F., Kämpfner, H., Czichy, R., Meyer, M. & Lutzer, M. Optical Inter-Satellite Communication Operational. in Military Communications Conference (MILCOM) 1583-1587 (IEEE, 2010) https://doi.org/10.1109/milcom.2010.5680175
  • [9] Jamalipour, A. Low Earth Orbital Satellites For Personal Communi-cation Networks. (Artech House, Boston, 1999).
  • [10] Sun, Z. Satellite Networking. Principles and protocols. (Wiley, 2005).
  • [11] Chaudhary, S., Amphawan, A. & Nisar, K. K. Realization of free space optics with OFDM under atmospheric turbulence. Optik, 125, 5196-5198 (2014). https://doi.org/10.1016/j.ijleo.2014.05.036
  • [12] Kumar, N. & Teixeira, A. L. J. 10 Gbit/s OFDM based FSO communication system using M-QAM modulation with enhanced detection. Opt. Quantum Electron. 1, 9 (2016). https://doi. org/10.1007/s11082-015-0272-5
  • [13] Singh, A., Singh, S. & Kumar, R. Cost-Effective Design of Soft Robotic Prosthetic Arm Based on 3D Printing. in Additive, Subtractive, and Hybrid Technologies: Recent Innovations in Manufacturing 115-127 (Springer International Publishing, 2022).
  • [14] Kumar, S., Gill, S. & Singh, K. Performance investigation of inter-satellite optical wireless communication (IsOWC) system employing multiplexing techniques. Wirel. Pers. Commun. 98, 1461-1472 (2018). https://doi.org/10.1007/s11277-017-4926-4
  • [15] Rani, S. et al. Security and privacy challenges in the deployment of cyber-physical systems in smart city applications: State-of-art work. Materialstoday Proc. 62, 4671-4676 (2022). https://doi.org/10.1016/j.matpr.2022.03.123
  • [16] Kumari, G. & Selwal, C. Performance Optimization for High Speed WDM Based Inter-Satellite Optical Wireless Communication. in International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) 1800-1804 (IEEE, 2016). https://doi.org/10.1109/SCOPES.2016.7955753
  • [17] Shatnawi, A. A., Safar, A. M. & Warip, M. Influence of transmitting pointing errors on high speed WDM-AMI-Is-OWC transmission system. J. Opt. Commun. 39, 123-128 (2016). https://doi.org/10.1515/joc-2016-0117
  • [18] Zhao, Z., Zhang, Z., Tan, J., Liu, Y. & Liu, J. 200 Gb/s FSO WDM communication system empowered by multiwavelength directly modulated TOSA for 5G wireless networks. IEEE Photon. J. 10, 1-8 (2018). https://doi.org/10.1109/JPHOT.2018.2851558
  • [19] Tian, B. et al. Proposal and performance analysis on the PDMmicrowave photonic link for the mm-wave signal with hybrid QAM- MPPM-RZ modulation. Opt. Commun. 419, 59-66 (2018).https://doi.org/10.1016/j.optcom.2018.03.004
  • [20] Makovejs, S. et al. Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation. Opt. Express 18, 12939-12947 (2010).https://doi.org/10.1364/OE.18.012939
  • [21] Renaudier, J. et al. Transmission of 100 Gb/s coherent PDM-QPSKover 16 x 100 km of standard fiber with allerbium amplifiers. Opt. Express 17, 5112-5119 (2009).https://doi.org/10.1364/OE.17.005112
  • [22] Charlet, G. et al. Trans- mission of 16.4-Tbit/s capacity over 2550km using PDM QPSK modulation format and coherent receiver. J. Light. Technol. 27, 153-157 (2009).https://doi.org/10.1109/JLT.2008.2005506
  • [23] Tan, Q. & Chen, W. Analysis of Inter-Satellite Homodyne BPSKOptical Communication Link with Optical Field Misalignment. inProc. PIERS 1394-1398 (PIERS, 2008).
  • [24] Prat, J., Santos, M. & Omella, M. Square root module to combatdispersion-induced nonlinear distortion in radio-over-fiber systems.IEEE Photon. Technol. Lett. 18, 1928-1930 (2006).https://doi.org/10.1109/LPT.2006.881662
  • [25] Prat, J. et al. An Optical Communication System with ElectronicEqualizers. in Proceedings of 31st European Conference on Optical Communication (ECOC) 3, 713-714 (IEEE, 2005).https://doi.org/10.1049/cp:20050685
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9a7e54a-2ff0-4365-a95c-95465572aea2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.