PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The simulation of corrosion degradation of concrete specimen in stationary heat and moisture conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is focused on the problem of forecasting damage in reinforced concrete specimens as the consequence of chloride corrosion. The performed numerical calculations included time necessary for filling empty pore space and tightening corrosion products in the interfacial transition zone (ITZ) . In those calculations we assumed the formation of distortional strains in the ITZ layer caused by mass increase of corrosion products dependent on corrosion current intensity.
PL
W tej pracy skupiono się na prognozowaniu uszkodzeń w próbkach betonowych w wyniku korozji chlorkowej prętów zbrojeniowych. W obliczeniach uwzględniono czas wypełnienia otuliny, jak również czas potrzebny na doszczelnienie produktów korozji w warstwie przejściowej. W obliczeniach zastosowano podejście zakładające powstawanie korozyjnych odkształceń dystorsyjnych spowodowanych przyrostem masy produktów korozji zależnych od natężenia prądu korozyjnego.
Rocznik
Strony
107--113
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
autor
  • Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
autor
  • Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Ožbolt, J., Oršanić, F., Balabanić, G. (2017). Modelling processes related to corrosion of reinforcement in concrete: coupled 3D finite element model. Structure and Infr. Engin. Maintenance, Management, Life-Cycle Design and Performance, 13(1), 135-146.
  • [2] Saetta, A., Scotta, R., Vitaliani, R. (1998). Mechanical behaviour of concrete under physicalchemical attacks. Journal of Engineering Mechanics, 124(10), 1100-1109.
  • [3] Koniorczyk, M., Gawin, D. (2008). Heat and moisture transport in porous building materials containing salt. Journal of Building Physics, 31(4), 279-300.
  • [4] Dao, L. T. N., Dao, V. T. N., Kim, S-H., Ann, K, Y. (2010) Modelling steel corrosion in concrete structures - part 1: a new inverse relation between current density and potential for the cathodic reaction. International Journal of electrochemical science, 5(3), 302-313.
  • [5] Dao, L. T. N., Dao, V. T. N., Kim, S-H., Ann, K, Y. (2010). Modelling steel corrosion in concrete structures - part 2: a unified adaptive finite element model for simulation of steel corrosion. International Journal of electrochemical science, 5(3), 314-326
  • [6] Bentur, A., Alexander, M. G. (2000). Engineering of the interfacial transition zone in cementitious composites. Materials and Structures, 33(2), 82-87.
  • [7] Horne, A. T., Richardson, I. G., Brydson, R. M. D. (2007). Quantitative analysis of the microstructure of interfaces in steel reinforced concrete. Cement and Concrete Research 37(12), 1613-1623.
  • [8] Ollivier, J. P., Maso, J. C., Bourdette, B. (1995). Interfacial Transition Zone in Concrete. Journal of Advanced Cement Based Materials, 2(1), 30-38.
  • [9] Bentur, A., Diamond, S., Mindess, S. (1985). Cracking processes in steel fiber reinforced cement paste. Cement and Concrete Research, 15(2), 331-342.
  • [10] Liu, Y. (1996). Modelling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures (PhD thesis, Virginia Polytechnic Institute and State University). USA, Blacksburg, Virginia,.
  • [11] Chen, D., Mahadevan, S. (2008). Chloride-induced reinforcement corrosion and concrete cracking simulation. Cement & Concrete Composites, 30(3), 227-238.
  • [12] Bhargava, K., Ghosh, A. K., Mori, Y., Ramanujam, S. (2005). Modelling of time to corrosion-induced cover cracking in reinforced concrete structures. Cement and Concrete Research, 35(11), 2203-2218.
  • [13] Pantazopoulou, S. J., Papoulia, K. D. (2001). Modelling cover-cracking due to reinforced corrosion in RC structures. Journal of Engineering Mechanics, 127(4), 342-351.
  • [14] Krykowski, T. (2012). Modelling of concrete cover damage caused by reinforcement corrosion in reinforced concrete. Polish Academy of Sciences, Committee for Civil and Water Engineering, Warsaw, Studia z Zakresu Inżynierii 78 (in Polish).
  • [15] Molina, F. J., Alonso, C., Andrade, C. (1993). Cover cracking as a function of rebar corrosion: part 2 numerical model. Materials and Structures, 26(9), 532-548.
  • [16] Suwito, C., Xi, Y. (2008). The effect of chloride induced steel corrosion on service life of reinforced concrete structures. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance, 4(3), 177-192.
  • [17] Krykowski, T., Wieczorek, B. (2017). Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer. Corrosion Protection, 1(60), 3-6.
  • [18] Zybura, A., Jaśniok, M., Jaśniok, T. (2011). Diagnostics of reinforced concrete structures. Testing of reinforcement corrosion and protective properties of concrete, t. II. Warsaw: Wydawnictwo Naukowe PWN (in Polish).
  • [19] López, W., González, J. A. (1993). Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement. Cement and Concrete Research, 23(2), 368-376.
  • [20] Krykowski, T., Zybura, A. (2013). Modelling of reinforced concrete element damage as a result of reinforcement corrosion. Procedia Engineering 57, 614-623.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9a435d7-47cb-4443-ad33-ec82af044d0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.