PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of Finish Rolling Temperature and Niobium Microalloying on the Microstructure and Properties of a Direct Quenched High-Strength Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper comprehends the effects of finish rolling temperature (FRT) and Nb-microalloying on the microstructural evolution and resultant properties of a low carbon direct quenched steel in the yield strength category of ≥900 MPa. Results indicate that a decrease in FRT close to Ar3 temperature significantly influenced the microstructure following phase transformation, especially at the subsurface (~50-400 μm) of the rolled strip. On decreasing the FRT, the subsurface microstructure revealed a fine mixture of ferrite and bainite obviously as a result of strain-induced transformation, whereas the structure at the centreline remained essentially martensitic. Further, Nb-microalloying promoted the formation of ferrite and bainite even at higher FRTs, thus influencing the mechanical properties. The microstructures of the hot-rolled strips were further corroborated with the aid of CCT diagrams.
Twórcy
  • University of Oulu, Materials Engineering and Production Technology, Oulu, Finland
  • University of Oulu, Materials Engineering and Production Technology, Oulu, Finland
autor
  • University of Oulu, Materials Engineering and Production Technology, Oulu, Finland
autor
  • SSAB Europe Oy, Raahe, Finland
autor
  • University of Oulu, Materials Engineering and Production Technology, Oulu, Finland
autor
  • University of Oulu, Materials Engineering and Production Technology, Oulu, Finland
Bibliografia
  • [1] P.P. Suikkanen, J.I. Kömi, Microstructure, Mater. Sci. Forum. 783-786, 246-251 (2014).
  • [2] A.J. Kaijalainen, P. Suikkanen, L.P. Karjalainen, J.J. Jonas, Metall. Mater. Trans. A. 45, 1273-1283 (2014).
  • [3] A.J. Kaijalainen, P.P. Suikkanen, T.J. Limnell, L.P. Karjalainen, J.I. Kömi, D.A. Porter, J. Alloys Compd. 577, S642-S648 (2013).
  • [4] H. Asahi, E. Tsuru, T. Hara, M. Sugiyama, Y. Terada, H. Shinada, et al., Int. J. Offshore Polar Eng. 14, 36-41 (2004).
  • [5] M. Hemmilä, R. Laitinen, T. Liimatainen, D.A. Porter, in: Proc. 1st Int. Conf. “Super-High Strength Steels”, Associazone Italiana di Metallurgica – AIM, Rome (2005).
  • [6] J. Heikkala, A. Väisänen, in: Proc. 11th Bienn. Conf. Eng. Syst. Des. Anal., (2012).
  • [7] A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A. 654, 151-160 (2016).
  • [8] A.J. Kaijalainen, M. Liimatainen, V. Kesti, J. Heikkala, T. Liimatainen, D.A. Porter, Metall. Mater. Trans. A. 47, 4175-4188 (2016).
  • [9] I. Kozasu, in: T. Chandra, T. Sakai (Eds.), Int. Conf. Thermomechanical Process. Steels Other Mater., The Minerals, Metals &Materials Society, Wollongong, 47-55, (1997).
  • [10] W. Steven, A.G. Haynes, J. Iron Steel Inst. 183, 349-359 (1956).
  • [11] F.B. Pickering, in: M. Korchysky (Ed.), Microalloying ’75, Union Carbide Corporation, Washinghton DC, 9-31, (1977).
  • [12] Stuhlmann W., Härterei Tech. Mitteilungen. 6, 31-48 (1954).
  • [13] G.D. Wang, Z.D. Wang, J.B. Qu, Z.Y. Jiang, X.H. Liu, in: T. Chandra, T. Sakai (Eds.), Int. Conf. Thermomechanical Process. Steels Other Mater., The Minerals, Metals & Materials Society, Wollongong, 717-723, (1997).
  • [14] A. Brownrigg, P. Curcio, R. Boelen, Metallography. 8, 529-533, (1975).
  • [15] R.L. Higginson, C.M. Sellars, Worked Examples in Quantitative Metallography, (2003) Maney, London.
  • [16] S. Zajac, V. Schwinn, K.-H. Tacke, Mater. Sci. Forum. 500-501, 387-394 (2005).
  • [17] G. Langford, M. Cohen, Metall. Mater. Trans. 1, 1478-1480 (1970).
  • [18] P. Brozzo, G. Buzzichelli, A. Mascanzoni, M. Mirabile, Met. Sci. 11, 123-130 (1977).
  • [19] K. Zhu, O. Bouaziz, C. Oberbillig, M. Huang, Mater. Sci. Eng. A. 527, 6614-6619 (2010).
  • [20] A.J. DeArdo, ISIJ Int. 35, 946-954 (1995).
  • [21] R. Barbosa, F. Boratto, S. Yue, J.J. Jonas, in: A.J. Deardo (Ed.), Process. Microstruct. Prop. HSLA Steels, TMS, Warrendale, 51-61, 1988.
  • [22] F.C. Campbell, Elements of Metallurgy and Engineering Alloys, 2008 ASM International, Materials Park, Ohio.
  • [23] K.A. Taylor, S.S. Hansen, in: Heat Treat. Surf. Eng. New Technol. Pract. Appl., Chicago 1988, 137-142.
  • [24] M.C. Somani, D.A. Porter, J.M. Pyykkönen, J.M. Tarkka, J.I. Kömi, T.A. Intonen, et al., in: Int. Conf. Microalloyed Steels Process. Microstruct. Prop. Perform., Association for Iron & Steel Technology, Pittsburgh 2007, 95-106.
  • [25] J. Pyykkönen, P. Suikkanen, M.C. Somani, D.A. Porter, Matériaux Tech. 100, S1-17-19 (2012).
  • [26] K. Hulka, J.M. Gray, F. Heisterkamp, Niobium Technical Report 16/90, (1990).
  • [27] Y.E. Smith, C.A. Siebert, Metall. Trans. 2, 1711-725 (1971).
  • [28] B. Mintz, J. Lewis, J.J. Jonas, Mater. Sci. Technol. 13, 379-388 (1997).
  • [29] H. Yada, C.M. Li, H. Yamagata, ISIJ Int. 40, 200-206 (2000).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9a354fb-3d2a-4c0d-9ba9-14f437b294d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.