PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fuzzy KNN-based model for significant wave height prediction in large lakes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Some algorithms based on fuzzy set theory (FST) such as fuzzy inference system (FIS) and adaptive-network-based fuzzy inference system (ANFIS) have been successfully applied to significant wave height (SWH) prediction. In this paper, perhaps for the first time, the fuzzy K-nearest neighbor (FKNN) algorithm is utilized to develop a fuzzy wave height prediction model for large lakes, where the fetch length depends on the wind direction. As fetch length (or wind direction) can affect the wave height in lakes, this variable is also considered as one of the inputs of the prediction model. The results of the FKNN model are compared with those of some soft computing techniques such as Bayesian networks (BNs), regression tree induction (named M5P), and support vector regression (SVR). The developed FKNN model is used for SWH prediction in the western part of Lake Superior in North America. The results show that the FKNN and M5P model can outperform the other soft computing techniques.
Czasopismo
Rocznik
Strony
153--168
Opis fizyczny
Bibliogr. 36 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz, Iran
autor
  • School of Civil Engineering and Center of Excellence for Engineering and Management of Civil Infrastructures, College of Engineering, University of Tehran, Tehran, Iran
  • Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz, Iran
Bibliografia
  • [1] Abed-Elmdoust, A., Kerachian, R., 2012. Wave height prediction using the rough set theory. Ocean Eng. 54, 244-250, http://dx.doi.org/10.1016/j.oceaneng.2012.07.020.
  • [2] Altunkaynak, A., Wang, K. H., 2012. Estimation of significant wave height in shallow lakes using the expert system techniques. Expert Syst. Appl. 39 (3), 2549-2559, http://dx.doi.org/10.1016/j.eswa.2011.08.106.
  • [3] Balouchi, B., Nikoo, M. R., Adamowski, J., 2015. Development of expert systems for the prediction of scour depth under live-bed conditions at river confluences: application of different types of ANNs and the M5P model tree. Appl. Soft Comput. 34, 51-59, http://dx.doi.org/10.1016/j.asoc.2015.04.040.
  • [4] Berbić, J., Ocvirk, E., Carević, D., Lončar, G., 2017. Application of neural networks and support vector machine for significant wave height prediction. Oceanologia 59 (3), 331-349, http://dx.doi.org/10.1016/j.oceano.2017.03.007.
  • [5] Chai, T., Draxler, R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? Geosci. Model Dev. 7 (1), 1525-1534.
  • [6] Chen, H. L., Yang, B., Wang, G., Liu, J., Xu, X., Wang, S. J., Liu, D. Y., 2011. A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowl.-Based Syst. 24 (8), 1348-1359, http://dx.doi.org/10.1016/j.knosys.2011.06.008.
  • [7] Cover, T., Hart, P., 1967. Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13 (1), 21-27, http://dx.doi.org/10.1109/TIT.1967.1053964.
  • [8] Derrac, J., Chiclana, F., Garcia, S., Herrera, F., 2016. Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets. Inform. Sci. 329, 144-163, http://dx.doi.org/10.1016/j.ins.2015.09.007.
  • [9] Etemad-Shahidi, A., Ghaemi, N., 2011. Model tree approach for prediction of pile groups scour due to waves. Ocean Eng. 38 (13), 1522-1527, http://dx.doi.org/10.1016/j.oceaneng.2011.07.012.
  • [10] Etemad-Shahidi, A., Mahjoobi, J., 2009. Comparison between M50 model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng. 36 (15-16), 1175-1181, http://dx.doi.org/10.1016/j.oceaneng.2009.08.008.
  • [11] Fredj, I. B., Ouni, K., 2017. Comparison of crisp and fuzzy kNN in phoneme recognition. In: 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET), 14-17 January 2017, Hammamet, Tunisia, IEEE, 118-122, http://dx.doi.org/10.1109/ASET.2017.7983676.
  • [12] Karimi, S., Kisi, O., Shiri, J., Makarynskyy, O., 2013. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Comput. Geosci. 52, 50-59, http://dx.doi.org/10.1016/j.cageo.2012.09.015.
  • [13] Kazemi Elaki, N., Shabakhty, N., Abbasi Kia, M., Sanayee Moghaddam, S., 2016. Structural reliability: an assessment using a new and efficient two-phase method based on artificial neural network and a harmony search algorithm. Civil Eng. Infrastr. J. 49 (1), 1-20, http://dx.doi.org/10.7508/ceij.2016.01.001.
  • [14] Keller, J. M., Gray, M. R., Givens, J. A., 1985. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cyb. SMC(4) 580-585, http://dx.doi.org/10.1109/TSMC.1985.6313426.
  • [15] Li, J., 2016. Assessing spatial predictive models in the environmental sciences: accuracy measures, data variation and variance explained. Environ. Modell. Softw. 80, 1-8, http://dx.doi.org/10.1016/j.envsoft.2016.02.004.
  • [16] Mahjoobi, J., Etemad-Shahidi, A., Kazeminezhad, M. H., 2008. Hindcasting of wave parameters using different soft computing methods. Appl. Ocean Res. 30 (1), 28-36, http://dx.doi.org/10.1016/j.apor.2008.03.002.
  • [17] Malekmohamadi, I., Bazargan-Lari, M. R., Kerachian, R., Nikoo, M. R., Fallahnia, M., 2011. Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Eng. 38 (2), 487-497, http://dx.doi.org/10.1016/j.oceaneng.2010.11.020.
  • [18] Malekmohamadi, I., Ghiassi, R., Yazdanpanah, M. J., 2008. Wave hindcasting by coupling numerical model and artificial neural networks. Ocean Eng. 35 (3), 417-425, http://dx.doi.org/10.1016/j.oceaneng.2007.09.003.
  • [19] Monghasemi, S., Nikoo, M. R., Fasaee, M. A. K., Adamowski, J., 2015. A novel multi criteria decision making model for optimizing time-cost-qualitytrade-off problems in construction projects. ExpertSyst. Appl. 42(6), 3089-3104, http://dx.doi.org/10.1016/j.eswa.2014.11.032.
  • [20] Monghasemi, S., Nikoo, M. R., Fasaee, M. A. K., Adamowski, J., 2017. A hybrid of genetic algorithm and evidential reasoning for optimal design of project scheduling: a systematic negotiation framework for multiple decision-makers. Int. J. Inf. Tech. Decis. 16 (2), 389-420, http://dx.doi.org/10.1142/S0219622017500079.
  • [21] Nash, J. E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I - a discussion of principles. J. Hydrol. 10 (3), 282-290, http://dx.doi.org/10.1016/0022-1694(70)90255-6.
  • [22] Nikoo, M. R., Kerachian, R., 2017. Wave height prediction using artificial immune recognition systems (AIRS) and some other data mining techniques. IJST-Trans. Civil Eng. 41 (3), 329-344, http://dx.doi.org/10.1007/s40996-017-0067-y.
  • [23] Nikoo, M. R., Khorramshokouh, N., Monghasemi, S., 2015. Optimal design of detention rockfill dams using a simulation-based optimization approach with mixed sediment in the flow. Water Resour. Manag. 29 (15), 5469-5488, http://dx.doi.org/10.1007/s11269-015-1129-1.
  • [24] Nikoo, M. R., Varjavand, I., Kerachian, R., Pirooz, M. D., Karimi, A., 2014. Multi-objective optimum design of double-layer perforat-ed-wall breakwaters: application of NSGA-II and bargaining models. Appl. Ocean Res. 47, 47-52, http://dx.doi.org/10.1016/j.apor.2013.12.001.
  • [25] Özger, M., 2010. Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Eng. 37 (16), 1443-1451, http://dx.doi.org/10.1016/j.oceaneng.2010.07.009.
  • [26] Özger, M., Şen, Z., 2007. Prediction of wave parameters by using fuzzy logic approach. Ocean Eng. 34 (3), 460-469, http://dx.doi.org/10.1016/j.oceaneng.2006.03.003.
  • [27] Parajka, J., Merz, R., Skøien, J.O., Viglione, A., 2015. The role of station density for predicting daily runoff by top-kriging interpolation in Austria. J. Hydrol. Hydromech. 63 (3), 228-234, http://dx.doi.org/10.1515/johh-2015-0024.
  • [28] Patil, S. G., Mandal, S., Hegde, A. V., 2012. Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater. Adv. Eng. Softw. 45 (1), 203-212, http://dx.doi.org/10.1016/j.advengsoft.2011.09.026.
  • [29] Somari, N. M., Abdullah, M. F., Osman, M. K., Nazelan, A. M. I., Ahmad, K. A., Appanan, S. P. R. S., Hooi, L. K., 2016. Particles contaminations detection during plasma etching process by using k-nearest neighbors and Fuzzy k-nearest neighbors. In: Computing and Engineering (ICCSCE), November 2016, 6th IEEE International Conference on Control System, IEEE. 512-516, http://dx.doi.org/10.1109/ICCSCE.2016.7893630.
  • [30] Tetko, I. V., Livingstone, D. J., Luik, A. I., 1995. Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comp. Sci. 35 (5), 826-833.
  • [31] Tiwari, M. K., Chatterjee, C., 2010. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 394 (3), 458-470, http://dx.doi.org/10.1016/j.jhydrol.2010.10.001.
  • [32] Wang, P., Xiao, X., 2011. Predicting the risk type of human papillo-maviruses based on sequence-derived features. In: iCBBE 5th International Conference on Bioinformatics and Biomedical Engineering, 10-12 May 2011, Wuhan, China, IEEE, 1-4, http://dx.doi.org/10.1109/icbbe.2011.5779985.
  • [33] Warren, L. T., Damin, L., 1997. Two manufacturing applications of the fuzzy K-NN algorithm. Fuzzy Set Syst. 92 (3), 289-303, http://dx.doi.org/10.1016/S0165-0114(96)00176-5.
  • [34] Xiao, X., Wang, P., 2010. Application of function domain and pseudo amino acid composition to predict hetero-oligomer protein structural types. In: iCBBE 4th International Conference on Bioinformatics and Biomedical Engineering, 18-20 June 2010, Chengdu, China, IEEE, 1-4, http://dx.doi.org/10.1109/ICBBE.2010.5515624.
  • [35] Zadeh, L. A., 1965. Fuzzy sets. Inform. Comput. 8 (3), 338-353.
  • [36] Zanaganeh, M., Mousavi, S. J., Shahidi, A. F. E., 2009. A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Eng. Appl. Artif. Intel. 22 (8), 1194-1202, http://dx.doi.org/10.1016/j.engappai.2009.04.009.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9a26408-04b4-44f7-89cd-341cf9526ab6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.