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.1 Introduction

The papers [14] and [15] contain the beginnings of an algebraic investiga-

tion of a variety of lattices with additional structure, the variety PBZL∗

of PBZ*-lattices. The key motivation for the introduction of this class of al-

gebras comes from the foundations of quantum mechanics. Consider the

structure

E (H) =
(
E (H) ,∧s,∨s,′ ,∼ ,O, I

)
,

where:

• E (H) is the set of all effects of a given complex separable Hilbert

space H, i.e., positive linear operators of H that are bounded by the

identity operator I;

• ∧s and ∨s are the meet and the join, respectively, of the spectral

ordering ≤s so defined for all E,F ∈ E (H):

E ≤s F iff ∀λ ∈ R : MF (λ) ≤ME(λ),

where for any effect E, ME is the unique spectral family [19, Ch. 7]

such that E =
∫∞
−∞ λ dM

E(λ) (the integral is here meant in the sense

of norm-converging Riemann-Stieltjes sums [23, Ch. 1]);

• O and I are the null and identity operators, respectively;

• E′ = I− E and E∼ = Pker(E) (the projection onto the kernel of E).

The operations in E (H) are well-defined. The spectral ordering is in-

deed a lattice ordering [21, 18] that coincides with the usual ordering of

effects induced via the trace functional when both orderings are restricted

to the set of projection operators of the same Hilbert space.

A PBZ*-lattice can be viewed as an abstraction from this concrete phys-

ical model, much in the same way as an orthomodular lattice can be viewed

as an abstraction from a certain structure of projection operators in a com-

plex separable Hilbert space. The faithfulness of PBZ*-lattices to the phys-

ical model whence they stem is further underscored by the fact that they

reproduce at an abstract level the “collapse” of several notions of sharp

physical property that can be observed in E (H).
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Further motivation for the study of PBZL∗ comes from its emerging

relationships with many related algebraic structures (orthomodular lattices,

Kleene algebras, Stone algebras). In particular, PBZ*-lattices can be seen

as a common generalisation of orthomodular lattices and of Kleene algebras

with an additional unary operation.

This paper is devoted to laying down the basics of the structure theory

of the variety PBZL∗ and of some of its subvarieties; let us briefly sum-

marise its contents. In Section 2 we dispatch a number of preliminaries in

order to keep the paper reasonably self-contained, including a short résumé

of the results in [14] and [15]. In Section 3, we study decompositions of

PBZ*-lattices. As it happens for orthomodular lattices, and more gen-

erally for members of all Church varieties [22], direct decompositions in

a PBZ*-lattice L are induced by certain members of L (the so-called cen-

tral elements) that form a Boolean algebra and that can be conveniently

described. In particular, we show that the central elements in a PBZ*-

lattice L are those elements that “commute” with any a ∈ L, and that this

“commuting” relation generalises the analogous relation of decisive impor-

tance in the context of orthomodular lattices. In Section 4, we introduce

the notion of a p-ideal (ideal closed under perspectivity), mimicking the

corresponding definition available for orthomodular lattices. Although in

the general case p-ideals lack many of the strong properties one would ex-

pect from a reasonable notion of an ideal, as soon as we zoom in on the

subvariety SDM satisfying the strong De Morgan law (x ∧ y)∼ ≈ x∼ ∨ y∼,

we can show that such ideals coincide with the SDM-ideals in the sense of

Ursini (whence also with 0-classes of congruences, since PBZL∗ and all its

subvarieties are 0-subtractive). We also prove that the 0-assertional logic

of SDM is strongly algebraisable and we characterise its equivalent variety

semantics. Finally, we observe that the variety V(AOL) generated by an-

tiortholattices — that is, PBZ*-lattices with no nontrivial sharp element

— is a binary discriminator variety and we further simplify the description

of ideals in that case. In the concluding Section 5, after streamlining the

known equational basis for V(AOL), we axiomatise the varietal join of or-

thomodular lattices and the variety generated by antiortholattices in the

lattice of subvarieties of PBZL∗.
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.2 Preliminaries

.2.1 Universal Algebra and Lattice Theory

For basic information on universal algebra, the reader is referred to [6, 17].

Throughout this paper, all algebras will be nonempty; by a trivial al-

gebra we will mean a one–element algebra, and a trivial variety will be

a variety consisting solely of trivial algebras. If A is an algebra, then A

will be the universe of A; in some cases, such as those of congruence lat-

tices, lattices will be designated by their set reducts. If V is a variety of

algebras of similarity type ν and A or a reduct of A is a member of V,

then (ConV(A),∩,∨,∆A,∇A) will be the bounded lattice of the congru-

ences of A with respect to ν; when V is the variety of lattices, ConV(A)

will be denoted by Con(A). With V assumed implicit, the congruence of

A generated by an S ⊆ A × A will be denoted by Cg(S); for all a, b ∈ A,

the principal congruence Cg({(a, b)}) will be denoted by Cg(a, b).

For any lattice L and any x, y ∈ L, the principal filter (resp. ideal) of

L generated by x will be denoted by [x) (resp. (x]), and, if x ≤ y, then

[x, y] = [x) ∩ (y] will be the interval of L bounded by x and y. The dual

of any (bounded) lattice M will be denoted by Md. If A is an algebra

with a bounded lattice reduct, then such a reduct will be indicated by

Al. In this case, a congruence θ of A (or any of its reducts) is said to be

pseudo-identical iff 0A/θ =
{

0A
}

and 1A/θ =
{

1A
}

.

.2.2 PBZ*-lattices

We recap in this section some definitions and results on PBZ*-lattices (the

latter mostly from [14] and [15], except when explicitly noted) that will be

needed in the following.

Definition 2.1. A bounded involution lattice is an algebra L = (L,∧,∨,
′, 0, 1) of type (2, 2, 1, 0, 0) such that (L,∧,∨, 0, 1) is a bounded lattice with

partial order ≤ and the following conditions are satisfied for all a, b ∈ L:

• a′′ = a;

• a ≤ b implies b′ ≤ a′.
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Note that, for any bounded involution lattice L, the involution ′ : L→ L

is a dual lattice isomorphism of Ll.

Definition 2.2. A bounded involution lattice L = (L,∧,∨,′ , 0, 1) is

a pseudo-Kleene algebra in case it satisfies any of the following two equiv-

alent conditions:

(i) for all a, b ∈ L, if a ≤ a′ and b ≤ b′, then a ≤ b′ ;

(ii) for all a, b ∈ L, a ∧ a′ ≤ b ∨ b′.

The class of bounded involution lattices is a variety, here denoted by

BI. The involution of a pseudo-Kleene algebra is called Kleene complement.

The variety of pseudo-Kleene algebras, for which see e.g. [10], is denoted

by PKA. Distributive pseudo-Kleene algebras are variously called Kleene

lattices or Kleene algebras in the literature. Observe that in [14], embracing

the terminological usage from [12, p. 12], pseudo-Kleene algebras were

referred to as “Kleene lattices”. In [15], however, the authors switched to

the less ambiguous “pseudo-Kleene algebras”.

In unsharp quantum logic, there are several competing purely algebraic

characterisations of sharp effects [12, Ch. 7]. A quantum effect or property

is usually called sharp if it satisfies the noncontradiction principle:

Definition 2.3. Let L be a bounded involution lattice.

(i) An element a ∈ L is said to be Kleene-sharp iff a ∧ a′ = 0.

SK(L) denotes the class of Kleene-sharp elements of L.

(ii) L is an ortholattice iff SK(L) = L.

(iii) L is an orthomodular lattice iff L is an ortholattice and, for all a, b ∈ L,

if a ≤ b, then b = (b ∧ a′) ∨ a.

The variety of ortholattices is denoted by OL. Among ortholattices,

orthomodular lattices play a crucial role in the standard (sharp) approach

to quantum logic. The class of orthomodular lattices is actually a variety,

hereafter denoted by OML.

It is well-known that an ortholattice L is orthomodular if and only

if, for all a, b ∈ L, if a ≤ b and a′ ∧ b = 0, then a = b. In the wider

setting of bounded involution lattices, the previous condition does not imply
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the stronger condition of orthomodularity above. We will call this weaker

condition paraorthomodularity.

Definition 2.4. An algebra L with a bounded involution lattice reduct

is said to be paraorthomodular iff, for all a, b ∈ L:

if a ≤ b and a′ ∧ b = 0, then a = b.

It turns out that the class of paraorthomodular pseudo-Kleene algebras

is a proper quasivariety, whence we cannot help ourselves to the strong uni-

versal algebraic properties that characterise varieties. It is then natural to

wonder whether there exists an expansion of the language of bounded invo-

lution lattices where the paraorthomodular condition can be equationally

recovered. The appropriate language expansion is provided by including an

additional unary operation and moving to the type (2, 2, 1, 1, 0, 0), familiar

in unsharp quantum logic from the investigation of Brouwer-Zadeh lattices

(see [9] or [12, Ch. 4.2]).

Definition 2.5. A Brouwer-Zadeh lattice (or BZ-lattice) is an algebra

L =
(
L, ∧,∨ , ′, ∼, 0 , 1

)
of type (2, 2, 1, 1, 0, 0), such that:

(i) (L, ∧,∨ , ′, 0 , 1) is a pseudo-Kleene algebra;

(ii) for all a, b ∈ L, the following conditions are satisfied:

(1) a ∧ a∼ = 0; (2) a ≤ a∼∼;

(3) a ≤ b implies b∼ ≤ a∼; (4) a∼′ =a∼∼.

The operation ∼ is called the Brouwer complement of the BZ–lattice.

The class of all BZ-lattices is a variety, denoted by BZL; OL can be identi-

fied with the subvariety of BZL whose relative equational basis w.r.t. BZL
is given by the equation x∼ = x′. In any BZ-lattice, we set ♦x = x∼∼

and �x = x′∼. The following arithmetical lemma, the proof of which is

variously scattered in the above-mentioned literature and elsewhere [7, 8],

will be used without being referenced in what follows.
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Lemma 2.6. Let L be a BZ-lattice. For all a, b ∈ L, the following

conditions hold:
(i) a∼∼∼ = a∼; (vi) �(a ∧ b) = �a ∧�b;
(ii) a∼ ≤ a′; (vii) ♦(a ∨ b) = ♦a ∨ ♦b;
(iii) (a ∨ b)∼ = a∼ ∧ b∼; (viii) ♦(a ∧ b) ≤ ♦a ∧ ♦b;
(iv) a∼ ∨ b∼ ≤ (a ∧ b)∼; (ix) if a′ ≤ a, then a∼ = 0.

(v) (�(a′))′ = ♦a;

We remarked above that Kleene-sharpness is not the unique purely al-

gebraic characterisation of a sharp quantum property. Two noteworthy

alternatives now become available in our expanded language of BZ-lattices.

Definition 2.7. Let L be a BZ-lattice.

(i) An element a ∈ L is said to be ♦-sharp iff a = ♦a; the class of all

♦-sharp elements of L will be denoted by S♦(L).

(ii) An element a ∈ L is said to be Brouwer-sharp iff a∨a∼ = 1; the class

of all Brouwer-sharp elements of L will be denoted by SB(L).

It is easy to derive from the previous lemma that, in any BZ-lattice L,

S♦(L) = {a∼ : a ∈ L} = {a ∈ L : a′ = a∼}. For any BZ-lattice L, we have

that S♦(L) ⊆ SB(L) ⊆ SK(L). However, in any BZ-lattice of effects of

a Hilbert space (under the meet and join operation induced by the spectral

ordering) these three classes coincide. Consequently, it makes sense to

investigate whether there is a class of BZ-lattices for which this collapse

result can be recovered at a purely abstract level. The next definition and

theorem answer this question in the affirmative.

Definition 2.8. A BZ∗-lattice is a BZ-lattice L that satisfies, for all

a ∈ L, the condition

(∗) (a ∧ a′)∼ ≤ a∼ ∨�a.

Theorem 2.9. Let L be a paraorthomodular BZ*-lattice. Then,

S♦(L) = SB(L) = SK(L).

As pleasing as this result may be, the class of paraorthomodular BZ*-

lattices still suffers from a major shortcoming: the paraorthomodularity
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condition is quasiequational. However, the next result shows that it can

be replaced by an equation, so that paraorthomodular BZ*-lattices form

a variety, which we will denote by PBZL∗ and whose members will be called,

in brief, PBZ*-lattices.

Theorem 2.10. Let L be a BZ*-lattice. The following conditions are

equivalent:

(1) L is paraorthomodular;

(2) L satisfies the following ♦-orthomodularity condition for all a, b ∈ L:

(a∼ ∨ (♦a ∧ ♦b)) ∧ ♦a ≤ ♦b.

Every bounded lattice can be embedded as a sublattice into a PBZ*-

lattice [14, Lm. 5.3]. Consequently, PBZL∗ satisfies no nontrivial identity

in the language of lattices.

The naturalness of the concept of a PBZ*-lattice is further reinforced

by the circumstance that BZ-lattices of effects of a Hilbert space, under the

spectral ordering, qualify as instances of PBZ*-lattices:

Theorem 2.11. Let H be a complex separable Hilbert space. The

algebra

E (H) =
〈
E (H) ,∧s,∨s,′ ,∼ ,O, I

〉
,

(see the introduction for the notation) is a PBZ*-lattice. Moreover,

SK(E (H)) =S♦(E (H)) = SB(E (H))

is an orthomodular subuniverse of E (H) consisting of all the projection

operators of H.

A natural question is whether the class of all PBZ*-lattices of the form

E (H), for some complex separable Hilbert space H, generates the variety

PBZL∗. The answer to this question is known to be negative. In fact, there

are identities (e.g. x ≈ (x ∨ x∼) ∧ ♦x) that hold in the class of all PBZ*-

lattices of effects of some Hilbert space but fail in PBZL∗. The (probably

very difficult) problem of axiomatising the proper subvariety of PBZL∗ that

is so generated is open at the time of writing.

All orthomodular lattices become, of course, PBZ*-lattices when en-

dowed with a Brouwer complement that equals their Kleene complement.
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In every PBZ*-lattice L, SK(L) is always the universe of the largest ortho-

modular subalgebra SK(L) of L, so that L is orthomodular iff it satisfies

x∼ ≈ x′. Further examples of PBZ*-lattices are given by those algebras in

this class that are “as far apart as possible” from orthomodular lattices. In

any orthomodular lattice L, SK(L) = L; on the other hand, by definition,

a PBZ*-lattice L is an antiortholattice iff SK(L) = {0, 1}. We denote by

AOL the class of antiortholattices.

Lemma 2.12.

(i) A PBZ*-lattice L belongs to AOL iff 0∼ = 1 and, for all a ∈ L \ {0},
a∼ = 0.

(ii) Every L ∈ AOL is directly indecomposable.

(iii) AOL is a proper universal class.

The Brouwer complement of Lemma 2.12.(i) is called trivial.

For all n ≥ 1, the n-element Kleene chain with universe Dn = {0, d1, d2,

. . . , dn−2, 1}, with 0 < d1 < d2 < . . . < dn−2 < 1, is an antiortholattice Dn

under the trivial Brouwer complement. To avoid notational overloading,

the reduct (Dn)l will simply be denoted by Dn, as well. Note that every

finite chain is self–dual both as a bounded lattice and as a Kleene algebra,

so the notation Dd
n is superfluous in these cases; the same can be stated

about direct products of finite chains, in particular about Boolean algebras.

The following easy results are observed (sometimes implicitly) in the

literature on BZ-lattices, in particular in [14] and in [15]:

Lemma 2.13. (i) Any pseudo-Kleene algebra, endowed with the triv-

ial Brouwer complement, becomes a BZ-lattice.

(ii) Any paraorthomodular pseudo-Kleene algebra which, endowed with the

trivial Brouwer complement, satisfies condition (∗), becomes an an-

tiortholattice.

(iii) Any pseudo-Kleene algebra in which 0 is meet–irreducible is paraortho-

modular and satisfies condition (∗) when endowed with the trivial

Brouwer complement, whence it becomes an antiortholattice.

We will repeatedly have the occasion to consider the following identities

in the language of BZ–lattices:
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SDM (the Strong de Morgan law) (x ∧ y)∼ ≈ x∼ ∨ y∼;

WSDM (weak SDM ) (x ∧ y∼)∼ ≈ x∼ ∨ ♦y;

DIST x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z);

J2 x ≈ (x ∧ (y ∧ y′)∼) ∨ (x ∧ ♦ (y ∧ y′));

SK x ∧ ♦y ≤ �x ∨ y.

Clearly, SDM implies WSDM. Observe that OML satisfies SDM, J2

and SK. Trivially, AOL satisfies WSDM and J2, whence OML ∨ V(AOL)

satisfies these two identities.

We list some useful properties of the variety V(AOL) generated by

antiortholattices, including an axiomatisation relative to PBZL∗.

Lemma 2.14. Let L∈ V(AOL). Then each of the distributive identi-

ties

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z) ;

x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z)

holds if any one of the variables x, y, or z is evaluated in S♦(L) = SK(L).

Theorem 2.15.

(i) An equational basis for V(AOL) relative to PBZL∗ is given by the

identities

(AOL1) (x∼ ∨ y∼) ∧ (♦x ∨ z∼) ≈ ((x∼ ∨ y) ∧ (♦x ∨ z))∼ ;

(AOL2) x ≈ (x ∧ y∼) ∨ (x ∧ ♦y) ;

(AOL3) x ≈ (x ∨ y∼) ∧ (x ∨ ♦y) .

(ii) Every subdirectly irreducible member of V(AOL) is an antiortholat-

tice.

Clearly V(AOL) ∩OML is the variety BA of Boolean algebras.

The lattice LPBZL∗ of subvarieties of PBZL∗ has BA as a unique atom.

It is well-known that BA has a single orthomodular cover [5, Cor. 3.6]:

the variety V(MO2), generated by the simple modular ortholattice with

4 atoms. Moreover:
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Theorem 2.16. There is a single non-orthomodular cover of BA in

LPBZL∗, the variety V(D3) generated by the 3-element antiortholattice chain,

whose equational basis relative to V(AOL) is given by the identity SK.

Two other notable subvarieties of V(AOL) are the variety DIST, whose

equational basis relative to V(AOL) (or, equivalently, relative to PBZL∗)
is given by the distribution identity DIST, and the variety SAOL, whose

equational basis relative to V(AOL) is given by the Strong De Morgan

identity SDM. We have that:

Theorem 2.17. V(D5) = DIST ∩ SAOL.

A more circumscribed study of DIST and its subvarieties, also focussing

on the relationship with known classes of algebras (including Kleene-Stone

algebras,  Lukasiewicz algebras, Heyting-Wajsberg algebras) is currently on-

going [20, 16].

.2.3 Subtractive Varieties

Subtractive varieties were introduced by Ursini [24] to enucleate the com-

mon features of pointed varieties with a good ideal theory, like groups, rings

or Boolean algebras. They were further investigated in [1, 2, 3, 25].

Definition 2.18. Let V a variety of type ν, and let 0 be a nullary term

(or equationally definable constant) of type ν. V is called 0-subtractive if

there exists a binary term s, also of type ν, s.t. V satisfies the identities

s (x, x) ≈ 0 and s (x, 0) ≈ x. A variety of type ν which is 0-subtractive

w.r.t. at least one constant 0 of type ν is called subtractive tout court.

It is not hard to see that subtractivity is a congruence property: namely,

a variety V is 0-subtractive exactly when in each A ∈ V congruences per-

mute at 0 (meaning that for all θ, ϕ in ConV (A), 0A/(θ ◦ϕ) = 0A/(ϕ ◦ θ)).
To investigate ideals in this context, first and foremost, we need a work-

able general notion of ideal encompassing all the intended examples men-

tioned above (normal subgroups of groups, two-sided ideals of rings, ideals

or filters of Boolean algebras). Ursini’s candidate for playing this role is

defined below.
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Definition 2.19. (i) If K is a class of similar algebras whose type ν

is as in Definition 2.18, then a term p (−→x ,−→y ) of type ν is a K-ideal

term in −→x iff K �p (0, ..., 0,−→y ) ≈ 0.

(ii) A nonempty subset J of the universe of an A ∈ K is a K-ideal of

A (w.r.t. 0) iff for any K-ideal term p (−→x ,−→y ) in −→x we have that

pA
(−→a ,−→b ) ∈ J whenever −→a ∈ J and

−→
b ∈ A.

We will denote by IK (A) the set (or the lattice) of all K-ideals of A,

dropping the subscript whenever K can be contextually identified; observe

that {0} , A ∈ IK (A). The main reason that backs our previous claim to

the effect that subtractive varieties have a good ideal theory is given by the

following result. Let V be a variety of type ν. Recall that an algebra A

from V is said to be 0-regular iff the map sending a congruence θ ∈ Con (A)

to its 0-class 0A/θ is injective. The variety V is said to be 0-regular iff

every A ∈ V is 0-regular; this happens exactly when there exists a finite

family of binary ν-terms (called Fichtner terms) {di (x, y)}i≤n such that

V �d1 (x, y) ≈ 0&...&dn (x, y) ≈ 0⇔ x ≈ y.

Theorem 2.20. (i) Subtractive varieties have normal ideals. That

is, if V is a 0-subtractive variety and A ∈ V, then

IV (A) =
{
I ⊆ A : I = 0A/θ for some θ ∈ ConV (A)

}
.

(ii) If V is a 0-subtractive and 0-regular variety, then, for every A ∈ V,

ConV (A) is isomorphic to IV (A).

Actually, the situation described by the previous theorem can be made

more precise as follows. Let A be an algebra in a 0-subtractive variety V.

Then the following maps are well-defined: ·δ, ·ε : IV(A) → ConV(A), for

all I ∈ IV(A),

Iδ =
∧
{θ ∈ ConV (A) : 0A/θ = I},

Iε =
∨
{θ ∈ ConV (A) : 0A/θ = I}.

Henceforth, all unnecessary superscripts will be dropped for the sake of

conciseness. Note that, for all I ∈ IV(A), we have 0/Iδ = 0/Iε = I, so that

Iδ = min{θ ∈ ConV (A) : 0/θ = I} and Iε = max{θ ∈ ConV (A) : 0/θ =

I}. Moreover, the map I 7→ [Iδ, Iε] is a lattice isomorphism from IV(A)
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to the following lattice of intervals of ConV(A): {[min(Cθ),max(Cθ)] : θ ∈
ConV(A)}, where, for all θ ∈ ConV(A), Cθ = {α ∈ ConV(A) : 0/α =

0/θ} = {α ∈ ConV(A) : 0/θ ∈ A/α}, which is a complete sublattice of

ConV(A). Clearly, if V is in addition 0-regular, then Cθ = {θ} for all

θ ∈ ConV(A), hence all intervals of the form
[
Iδ, Iε

]
for some I ∈ IV(A)

are trivial, and Theorem 2.20.(ii) follows as a special case.

Definition 2.21. Let A be an algebra in a 0-subtractive variety V. A

is said to be reduced iff {0}ε = ∆A.

The class of all reduced algebras in V will be denoted by Vε. Clearly,

for all θ ∈ ConV (A), we have A/θ ∈ Vε iff θ = Iε for some I ∈ IV (A).

For a 0-subtractive variety, a property that generalises 0-regularity is fi-

nite congruentiality. Roughly put, a 0-subtractive variety is finitely congru-

ential if it has a family of terms that do “part of the job” usually dispatched

by the Fichtner terms for 0-regularity.

Definition 2.22. A variety V, whose type ν is as in Definition 2.18,

is finitely congruential iff there exists a finite set {di (x, y)}i≤n of binary

ν-terms s.t., whenever A ∈ V and I ∈ IV(A), we have:

Iε = {(a, b) : dAi (a, b) ∈ I for all i ≤ n}.

The next results establish a significant connection between the theory

of subtractive varieties and abstract algebraic logic (for information on this

research area, the reader is referred to [13]). It turns out that, for a 0-

subtractive variety V, the properties of the 0-assertional logic of V yield

relevant information on the properties of the class of reduced algebras in

V, and conversely.

Theorem 2.23. If A is a member of a 0-subtractive variety V, then

IV (A) is the class of all deductive filters on A of the 0-assertional logic of

V, and for all I ∈ IV (A), Iε = ΩA (I).

Theorem 2.24. [2, Thm. 3.12] For a 0-subtractive variety V the fol-

lowing are equivalent:

(i) The 0-assertional logic of V is equivalential.

(ii) Vε is closed under subalgebras and direct products.
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Theorem 2.25. [2, Thm. 3.16] For a 0-subtractive variety V the fol-

lowing are equivalent:

(i) The 0-assertional logic of V is strongly algebraisable with Vε as an

equivalent algebraic semantics.

(ii) Vε is a variety.

Important examples of subtractive varieties are binary discriminator

varieties. Recall that a discriminator variety [26] is a variety V of given

type ν for which there exists a ternary ν-term t(x, y, z) that realises the

ternary discriminator function

t (a, b, c) =

{
c if a = b,

a, otherwise

on any subdirectly irreducible member of V (equivalently, on any member

of some class K such that V = V (K)). The introduction of binary dis-

criminator varieties by Chajda, Halaš, and Rosenberg [11] was aimed at

singling out an appropriate weakening of the ternary discriminator that

can vouchsafe some of the strong properties of discriminator varieties (like

congruence distributivity or congruence permutability) only “locally”, i.e.

at 0. Binary discriminator varieties are paramount among subtractive va-

rieties with equationally definable principal ideals [1]; they were thoroughly

studied in the unpublished [4].

Definition 2.26. [11] Let A be a nonempty set and fix 0 ∈ A. The

0-binary discriminator on A is the binary function bA0 on A defined by:

bA0 (a, c) =

{
a if c = 0,

0 otherwise.

An algebra A with a term definable element 0 is said to be a 0-binary

discriminator algebra in case the 0-binary discriminator bA0 on A is a term

operation on A. A variety V(K) is a 0-binary discriminator variety if it

is generated by a class K of 0-binary discriminator algebras such that the

property is witnessed by the same terms for all members of K.
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.3 Central Elements

One of the most distinctive and far-reaching chapters in the theory of or-

thomodular lattices is the study of the commuting relation and of central

elements (see e.g. [5, § 2]). Given an orthomodular lattice L and a, b ∈ L,

a is said to commute with b in case (a ∧ b) ∨ (a′ ∧ b) = b. Such a relation

is reflexive and symmetric. An element a ∈ L is said to be central in L in

case it commutes with all elements of L. The next celebrated result is one

of the most useful tools for practicioners of the field:

Theorem 3.1 (Foulis-Holland). [5, Prop. 2.8] If L is an orthomodular

lattice and a, b, c ∈ L are such that a commutes both with b and with c, then

the set {a, b, c} generates a distributive sublattice of Ll.

Although these investigations were carried out in the special context

of orthomodular lattices, the notion of a central element is deeply rooted

in universal algebra. Recall that, if A is an algebra in a double-pointed

variety V with constants 0, 1, an element e ∈ A is central in A in case the

congruences Cg (e, 0) and Cg (e, 1) are complementary factor congruences

of A [22]. By C(A) we denote the centre of A, i.e. the set of central

elements of the algebra A. In particular, if A is a Church algebra [22],

namely, if there is an “if-then-else” term operation qA on A s.t., for all

a, b ∈ A, qA
(
1A, a, b

)
= a and qA

(
0A, a, b

)
= b, then, by defining

x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y) and x′ = q(x, 0, 1),

we get:

Theorem 3.2. [22, Thm. 3.7] The algebra c [A] =(C(A),∧,∨,′ , 0, 1)

is a Boolean algebra which is isomorphic to the Boolean algebra of factor

congruences of A.

In Church algebras, central elements can be equationally characterised

[22, Prop. 3.6]. When studying a specific variety V, however, more infor-

mative descriptions of central elements in members of V can sometimes be

found either in terms of certain properties of intrinsic interest, or by appro-

priately streamlining the above-mentioned equational characterisation. As

regards members of OML, for example, it can be shown that the two defi-

nitions of central element we have given above are equivalent. For PBZL∗,
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on the other hand, a more economical equational description of central el-

ements was provided in [14, Lm. 5.9]. We reproduce this lemma for the

reader‘s convenience:

Lemma 3.3. Let L ∈ PBZL∗. Then e ∈ L is central in L iff it satisfies

the following conditions for all a, b ∈ L:

C1 a = (e ∧ a) ∨ (e′ ∧ a);

C2 (a ∨ b) ∧ e = (a ∧ e) ∨ (b ∧ e);

C3 (a ∨ b) ∧ e′ = (a ∧ e′) ∨ (b ∧ e′);

C4 ((e ∨ b) ∧ (e′ ∨ a))∼ = (e ∨ b∼) ∧ (e′ ∨ a∼).

The aim of the next subsection is to improve on this result, giving a de-

scription of the centre in a generic PBZ*-lattice that resembles as closely

as possible the one we have in orthomodular lattices.

.3.1 Central Elements in PBZ*-lattices

Throughout the rest of this subsection, unless mentioned otherwise, L will

be an arbitrary PBZ*-lattice. Observe that C(L) ⊆ SK(L), by C1 for

a = 1. Since e′ = e∼ for all e ∈ SK(L), it follows that, for all e ∈ L:

e ∈ C(L) iff e∼ ∈ C(L). In [14, Thm. 5.4] it is also proved that central

elements in any member L of V(AOL) are exactly the members of SK (L).

The problem of finding a manageable description of central elements in

PBZ*-lattices, that relates in a perspicuous way to the notions of a centre

and of a commutator in orthomodular lattice, was however left open. We

now set about filling this gap. We show that the property of being central,

in a generic PBZ*-lattice, is actually two-sided. In order to belong to C(L),

an e ∈ L should not only “commute” with any element of L, in a sense of

commuting that appropriately generalises the corresponding (reflexive and

symmetric) relation on orthomodular lattices; but it should also be such

that, for any a ∈ L, (e∧a)∼ = e∼∨a∼ and (e′∧a)∼ = �e∨a∼. This latter

component is sort of “hidden” in the case of OML, where the Strong De

Morgan identity is satisfied across the board.



PBZ*-LATTICES: STRUCTURE THEORY AND SUBVARIETIES 19

We define the following binary relations on L:

CL = {(a, b) ∈ L2 : (a ∧ b) ∨ (a′ ∧ b) = b};
CSDM,L=CL ∩ {(a, b) ∈ L2 : (a ∧ b)∼=a∼ ∨ b∼ and (a′ ∧ b)∼=�a ∨ b∼}.

Both relations are clearly reflexive. Also, for all a ∈ L, (1, a) ∈ CSDM,L ⊆
CL, while the following four conditions are mutually equivalent: i) (a, 1) ∈
CSDM,L; ii) (a, 1) ∈ CL; iii) a ∨ a′ = 1; iv) a ∈ SK(L). Hence, CSDM,L

is symmetric exactly when CL is symmetric, which in turn obtains if and

only if L is orthomodular — in which case, apparently, the two relations

coincide.

The next definition provides a formal clothing to the above informal

remarks about the property of being central in PBZ*-lattices. Our goal is

to show that it exactly captures, for this variety, the universal algebraic

property of centrality, as encoded by Lemma 3.3.

Definition 3.4. Let L ∈ PBZL∗. An element a ∈ L is said to be

PBZ*-central iff (a, b) ∈ CSDM,L for all b ∈ L.

We will denote by Cpbz(L) the set of all PBZ*-central elements of L:

Cpbz(L) = {a ∈ L : (∀ b ∈ L) ((a, b) ∈ CSDM,L)}.

We also consider the following subset of L:

Cp(L) = {a ∈ L : (∀ b ∈ L) ((a, b) ∈ CL)}.

In virtue of the above,

Cpbz(L)

= Cp(L) ∩ {a ∈ L : (∀ b ∈ L) ( (a ∧ b)∼= a∼ ∨ b∼, (a′ ∧ b)∼= �a ∨ b∼)}
= Cp(L) ∩ {a ∈ SK(L) : (∀ b ∈ L) ((a ∧ b)∼=a∼ ∨ b∼, (a′ ∧ b)∼=�a ∨ b∼)}
⊆ Cp(L) ⊆ SK(L).

Lemma 3.5. Let L ∈ PBZL∗. Then:

(i) Cp(L) = {a ∈ SK(L) : (∀ b ∈ L) ((a ∧ b) ∨ (a∼ ∧ b) = b)} = {a ∈
SK(L) : (∀ b ∈ L) ((a ∨ b) ∧ (a∼ ∨ b) = b)};

(ii) for all a ∈ SK(L), a ∈ Cp(L) iff a∼ ∈ Cp(L); furthermore, a ∈
Cpbz(L) iff a∼ ∈ Cpbz(L);
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(iii) if L satisfies WSDM, then Cpbz(L) = Cp(L).

Proof. Let a ∈ SK(L), arbitrary.

(i) The fact that a′ = a∼ gives us the first equality. To obtain the second

equality, notice that, for all b ∈ L, we have: (a, b) ∈ CL iff (a∧b)∨(a′∧b) = b

iff (a′ ∨ b′) ∧ (a ∨ b′) = b′ iff (a ∨ b′) ∧ (a∼ ∨ b′) = b′, hence: (a, b) ∈ CL for

all b ∈ L iff (a ∨ b) ∧ (a∼ ∨ b) = b for all b ∈ L.

(ii) From (i), along with the fact that a = ♦a.

(iii) From the fact that Cp(L) ⊆ SK(L). �

Note from this proof that CL and CSDM,L preserve the Kleene com-

plement and that, under WSDM, the relation CSDM,L ∩ (SK(L) × L) =

CL ∩ (SK(L) × L) preserves the Brouwer complement. Some useful prop-

erties of members of Cp(L) follow in the next two lemmas.

Lemma 3.6. Let L ∈ PBZL∗ and let a ∈ L be such that a∼ ∈ Cp(L).

Then, for all b, c ∈ L:

(i) a∼ ∨ b = a∼ ∨ (♦a ∧ b) and a∼ ∧ b = a∼ ∧ (♦a ∨ b);

(ii) b∨(c∧♦a) = (b∨c∨a∼)∧(b∨♦a) and b∧(c∨♦a) = (b∧c∧a∼)∨(b∧♦a);

(iii) a∼∧ (b∨ c) = a∼∧ (b∨ (a∼∧ c)) and a∼∨ (b∧ c) = a∼∨ (b∧ (a∼∨ c)).

Proof. By adapting the corresponding proofs in [14, Lm. 5.10]. �

Lemma 3.7. Let L ∈ PBZL∗, and let a ∈ L be such that a∼ ∈ Cp(L).

Then the following hold for all b, c ∈ L:

(i) b ∨ (c ∧ a∼) = (b ∨ c) ∧ (b ∨ a∼) and b ∧ (c ∨ a∼) = (b ∧ c) ∨ (b ∧ a∼);

(ii) a∼∧ (b∨ c) = (a∼∧ b)∨ (a∼∧ c) and a∼∨ (b∧ c) = (a∼∨ b)∧ (a∼∨ c).

Proof. We prove the first equalities in each pair. The lattice duals are

derived similarly.

(i) Let x = b ∨ (c ∧ a∼). Then:

x = x ∧ (x ∨ (c ∧ (x ∨ ♦a))) Absorption

= (x ∨ a∼) ∧ (x ∨ ♦a) ∧ (x ∨ (c ∧ (x ∨ ♦a))) Lemma 3.5

= (x ∨ a∼) ∧ (x ∨ (c ∧ (x ∨ ♦a))) Lattice prop.

= (b ∨ a∼) ∧ (x ∨ (c ∧ (x ∨ ♦a))) Absorption

= (b ∨ a∼) ∧ (x ∨ c)
= (b ∨ c) ∧ (b ∨ a∼) Absorption
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The penultimate equality is obtained by observing that, according to

Lemma 3.6.(i), since ♦(a∼) = a∼, we have: c ≤ b∨c∨♦a = b∨♦a∨(a∼∧c) =

x ∨ ♦a.

(ii)

a∼ ∧ (b ∨ c) = a∼ ∧ (b ∨ (a∼ ∧ c)) Lemma 3.6.(iii)

= ((a∼ ∧ c) ∨ a∼) ∧ (b ∨ (a∼ ∧ c)) Absorption

= (a∼ ∧ b) ∨ (a∼ ∧ c) (i)

�

Theorem 3.8. Let L ∈ PBZL∗. Then Cpbz(L) = C(L).

Proof. Let e ∈ L.

Assume that e∼ ∈ Cpbz(L) ⊆ Cp(L). We verify all the conditions C1

through C4 in Lemma 3.3. C1 holds because (e∼, a) ∈ CSDM,L ⊆ CL for

all a ∈ L. C2 holds by Lemma 3.7.(ii). C3 holds by Lemma 3.7.(ii) and

Lemma 3.5, which ensures us that e∼′ = ♦e ∈ Cp(L). From the latter fact,

the equality e∼ ∨ ♦e = 1 and Lemma 3.7.(i), we obtain:

a ∧ b ≤(a ∨ b) ∧ (a ∨ ♦e) ∧ (b ∨ e∼)

=(a ∨ b) ∧ (e∼ ∨ b) ∧ (♦e ∨ a) ∧ (e∼ ∨ ♦e)
= (b ∨ (a ∧ e∼)) ∧ (♦e ∨ (a ∧ e∼))

= (a ∧ e∼) ∨ (b ∧ ♦e),

whence, also using the equality e∼ ∧ ♦e = 0 and Lemma 3.5.(ii),

((e∼ ∨ b) ∧ (♦e ∨ a))∼ = ((e∼ ∧ a) ∨ (♦e ∧ b) ∨ (b ∧ a))∼ Lemma 3.7

= ((e∼ ∧ a) ∨ (♦e ∧ b))∼

= (e∼ ∧ a)∼ ∧ (♦e ∧ b)∼

= (e∼ ∨ b∼) ∧ (♦e ∨ a∼) e∼,♦e ∈ Cpbz(L)

Conversely, if e∼ is central in L, then by C1 we have that for all a ∈ L,

a = (a ∧ e∼) ∨ (a ∧ ♦e), whereby e∼∈ Cp(L). Now, recall that if e∼ is

central, then so is ♦e, whereby C4 holds for both elements — i.e., for all

a, b ∈ L:

(i) ((e∼ ∨ b) ∧ (♦e ∨ a))∼ = (e∼ ∨ b∼) ∧ (♦e ∨ a∼);

(ii) ((♦e ∨ b) ∧ (e∼ ∨ a))∼ = (♦e ∨ b∼) ∧ (e∼ ∨ a∼) .
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Letting b = e∼ in (i) and using Lemma 3.7.(ii), we have that (e∼ ∧ a)∼ =

((e∼ ∨ e∼) ∧ (♦e ∨ a))∼ = ♦e ∨ a∼. Similarly, letting b = ♦e in (ii), we

obtain (♦e ∧ a)∼ = e∼ ∨ a∼. �

.3.2 Central Elements in the Variety Generated by Antiortho-

lattices

In any member L of V(AOL) central elements are exactly the sharp ele-

ments: C (L) = SK (L). Therefore, for any a ∈ L, L is decomposable as

L/Cg (a∼, 0)×L/Cg (a∼, 1), or equivalently as L/Cg (a∼, 0)×L/Cg (♦a, 0).

However, the mentioned results in [22] do not provide us with a uniform

recipe to obtain an explicit description of the factors in this decomposi-

tion. This situation marks a sharp contrast with the case of orthomodular

lattices, where the following result is available:

Theorem 3.9. [5, Lm. 2.7] Let L ∈ OML and let e ∈ C (L). Then

L ' L1 × L2, where L1,L2 are algebras whose universes are the intervals

[0, e] and [0, e′], respectively.

In this subsection, we similarly characterise the factors in these decom-

positions in terms of algebras on intervals in L.

Lemma 3.10. Let L ∈ V(AOL) and let a ∈ L. Define:

L1 =
(
[0, a∼] ,∧,∨,′1 ,∼1 , 0, a∼

)
;

L2 =
(
[0,♦a] ,∧,∨,′2 ,∼2 , 0,♦a

)
,

where for all b in [0, a∼], b′1 = b′ ∧ a∼, b∼1 = b∼ ∧ a∼, while for all c in

[0,♦a], c′2 = c′ ∧ ♦a, c∼2 = c∼ ∧ ♦a. Then the algebras L1 and L2 are in

V(AOL).

Proof. Clearly, L1 and L2 are bounded lattices. We now verify the

remaining properties for L1; by replacing a by a∼, we obtain our claim for

L2.

(L1 is a pseudo-Kleene algebra). Let b, c ∈ [0, a∼]. Then, using Lemma

2.14.(iii), b′1′1 = (b′ ∧ a∼)′ ∧ a∼ = (b ∨ ♦a) ∧ a∼ = b ∧ a∼ = b. Moreover,

(b ∧ c)′1 = (b ∧ c)′ ∧ a∼ = (b′ ∨ c′) ∧ a∼ = (b′ ∧ a∼) ∨ (c′ ∧ a∼) = b′1 ∨ c′1.

Finally, since b ∧ b′ ≤ c ∨ c′ in L, we use Lemma 2.14 and obtain

b ∧ b′1 = b ∧ b′ ∧ a∼ ≤
(
c ∨ c′

)
∧ (c ∨ a∼) = c ∨

(
c′ ∧ a∼

)
= c ∨ c′1.
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(L1 is paraorthomodular). Let b, c ∈ [0, a∼]. Suppose that b ≤ c and

that b′1 ∧ c = b′ ∧ a∼ ∧ c = 0. Since c ≤ a∼, b′ ∧ a∼ ∧ c = b′ ∧ c, whence

paraorthomodularity of L yields the desired result.

(L1 is a BZ-lattice). Let b, c ∈ [0, a∼]. Clearly, b ∧ b∼1 = 0. Further,

b∼1∼1 = (b∼ ∧ a∼)∼∧a∼. Since b∼ and a∼ are sharp elements, (b∼ ∧ a∼)∼ =

(b∼ ∧ a∼)′ = ♦b ∨ ♦a, hence b∼1∼1 = (b∼ ∧ a∼)∼ ∧ a∼ = (b∼ ∧ a∼)
′
∧ a∼ =

b∼1′1. By Lemma 2.14 b∼1∼1 = (♦b ∨ ♦a)∧ a∼ = ♦b∧ a∼ ≥ b. Finally, it is

easily seen that if b ≤ c, then c∼1 ≤ b∼1.

(L1 is a BZ*-lattice). Let b ∈ [0, a∼]. Then, by Lemma 2.14 and

WSDM, we have that:(
b ∧ b′1

)∼1
= (b ∧ b′ ∧ a∼)∼ ∧ a∼
= (b ∧ b′)∼ ∧ a∼
= (b∼ ∨�b) ∧ a∼
= (b∼ ∧ a∼) ∨ (�b ∧ a∼)

= (b∼ ∧ a∼) ∨ ((b′ ∧ a∼)∼ ∧ a∼)

= b∼1 ∨ b′1∼1.

(L1 ∈ V(AOL)). By way of example, we check that the reformula-

tion of AOL2 in terms of the new operations ∼1 and ′1 is satisfied in any

antiortholattice M. Thus, for a, b, c ∈M, consider the element

tM (a, b, c) = (b ∧ c∼ ∧ a∼) ∨ (b ∧ (c∼ ∧ a∼)∼ ∧ a∼) .

If c > 0, then tM (a, b, c) = 0 ∨ (b ∧ 1 ∧ a∼) = b ∧ a∼. If c = 0, then

tM (a, b, c) = (b ∧ a∼) ∨ (b ∧ ♦a ∧ a∼) = (b ∧ a∼) ∨ 0 = b ∧ a∼.

Since L ∈ V(AOL), it follows that for all a, b, c ∈ L, tL (a, b, c) = b∧a∼,

which equals b whenever b ≤ a∼, hence L1 satisfies AOL2. �

Theorem 3.11. Let L ∈ V(AOL) and let a ∈ L. Then L ' L1 × L2,

where L1,L2 are defined as in Lemma 3.10.

Proof. Let ϕ : L → L1 × L2 be defined, for any b ∈ L, by ϕ (b) =

(b ∧ a∼, b ∧ ♦a). We first show that ϕ is a bijection. If ϕ (b) = ϕ (c) for

some b, c ∈ L, then b ∧ a∼ = c ∧ a∼ and b ∧ ♦a = c ∧ ♦a. Thus, by AOL2,

b = (b ∧ a∼) ∨ (b ∧ ♦a) = (c ∧ a∼) ∨ (c ∧ ♦a) = c.
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Now, let (x, y) ∈ L1 × L2. Then x ≤ a∼ and y ≤ ♦a, whence y ∧ a∼ ≤
♦a ∧ a∼ = 0. Let us compute ϕ (x ∨ y). Using Lemma 2.14, we obtain

(x ∨ y) ∧ a∼ = (x ∧ a∼) ∨ (y ∧ a∼)

= x ∨ 0 = x.

Similarly, (x ∨ y) ∧ ♦a = y and thus ϕ is onto.

Next, we show that ϕ preserves meets and the unary operations (observe

that this is sufficient in virtue of Lemma 3.10). For meets,

ϕ
(
b ∧L c

)
= (b ∧ c ∧ a∼, b ∧ c ∧ ♦a)

= (b ∧ a∼, b ∧ ♦a) ∧L1×L2 (c ∧ a∼, c ∧ ♦a)

= ϕ (b) ∧L1×L2 ϕ (c) .

With regards to Kleene complements, resorting again to Lemma 2.14,

ϕ
(
b′L
)

= (b′ ∧ a∼, b′ ∧ ♦a)

= ((b′ ∨ ♦a) ∧ a∼, (b′ ∨ a∼) ∧ ♦a)

=
(
(b ∧ a∼)′ ∧ a∼, (b ∧ ♦a)′ ∧ ♦a

)
=
(

(b ∧ a∼)′1 , (b ∧ ♦a)′2
)

= ϕ (b)′L1×L2 .

For Brouwer complements the computation is similar. It is safely left

to the reader, who is warned that the WSDM identity (x ∧ y∼)∼ ≈ x∼∨♦y
will be needed somewhere down the line. �

.4 Ideal Theory

It is well-known from the theory of orthomodular lattices that OML-ideals

admit a manageable characterization in terms of lattice ideals closed under

perspectivity, for short p-ideals: in other words, in terms of lattice ideals I

of an orthomodular lattice L such that, whenever a ∈ I, then also b e a =

b ∧ (b′ ∨ a) ∈ I for all b ∈ L [5, Prop. 4.7]. The aim of this section is to

generalise this idea within the expanded language of PBZL∗. Unfortunately,

in the general case these p-ideals do not even coincide with 0-classes of

congruences — and, a fortiori, no isomorphism result between the lattices

of p-ideals and of congruences can be attained. The situation improves if we
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restrict ourselves to the subvariety SDM of PBZL∗, axiomatised relative to

PBZL∗ by the Strong De Morgan identity. In fact, in any L ∈ SDM p-ideals

coincide with Ursini SDM-ideals, hence with 0-classes of congruences, given

the fact that PBZL∗ (and thus, all the more so, SDM) is a 0-subtractive

variety.

.4.1 Ideals in PBZ*-lattices

We start by defining the notion of a p-ideal for generic PBZ*-lattices. Here-

after, whenever L is a PBZ*-lattice and a, b ∈ L, let a e b = a ∧ (a∼ ∨ b).

Definition 4.1. Let L be a PBZ*-lattice. I ⊆ L is a p-ideal iff it is

a lattice ideal of L s.t. if a ∈ I, then ♦b e ♦a ∈ I for all b ∈ L.

Lemma 4.2. Let L be a PBZ*-lattice, let I be a p-ideal of L, and let

a, b ∈ L. Then: (i) if a ∈ I, then ♦a ∈ I; (ii) ♦a e ♦b ∈ I iff ♦b e ♦a ∈ I.

Proof. (i) Let b = 1 in Definition 4.1.

(ii) Suppose that ♦b ∧ (b∼ ∨ ♦a) ∈ I. Then, since I is a p-ideal,

♦a ∧ (a∼ ∨ ♦ (♦b ∧ (b∼ ∨ ♦a))) = ♦a ∧ (a∼ ∨ (♦b ∧ (b∼ ∨ ♦a))) ∈ I.

By Theorem 3.1 applied to SK (L), however,

♦a ∧ (a∼ ∨ (♦b ∧ (b∼ ∨ ♦a))) = ♦a ∧ (a∼ ∨ ♦b) ,

whence our conclusion. �

We now aim at defining a customary notion of equivalence between

elements in a PBZ*-lattice modulo a given p-ideal. Note that {0} is a p-

ideal; thus,

Definition 4.3. Let L be a PBZ*-lattice, and let I be a p-ideal of L.

The elements a, b ∈ L are said to be I-modally equivalent iff

(♦a)∼ e ♦b, (♦b)∼ e ♦a, (�a)∼ e �b, (�b)∼ e �a ∈ I.

The elements a, b ∈ L are said to be modally equivalent iff they are

{0}-modally equivalent, namely iff ♦a = ♦b and �a = �b.
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Definition 4.4. Let L be a PBZ*-lattice, and let I be a p-ideal of L.

We define the following binary relation on L:

ρ (I) = {(a, b) ∈ L : (♦a)∼ e ♦b, (♦b)∼ e ♦a, (�a)∼ e �b, (�b)∼ e �a ∈ I}.

Thus, (a, b) ∈ ρ (I) iff a and b are I-modally equivalent, and, in partic-

ular, (a, b) ∈ ρ ({0}) iff a and b are modally equivalent. The relation ρ (I)

also admits a less cumbersome description:

Theorem 4.5. Let L be a PBZ*-lattice, and let I be a p-ideal of L.

For a, b ∈ L the following conditions are equivalent:

(i) (♦a ∨ ♦b) ∧ (a∼ ∨ b∼) , ((�a)∼ ∨ (�b)∼) ∧ (�a ∨�b) ∈ I;

(ii) there exist s, t ∈ I such that ♦a ∨ s = ♦b ∨ s and �a ∨ t = �b ∨ t;

(iii) (a, b) ∈ ρ (I).

Proof. (i) implies (ii).

Let s = (♦a ∨ ♦b) ∧ (a∼ ∨ b∼) and t = ((�a)∼ ∨ (�b)∼) ∧ (�a ∨�b).
Then:

♦a ∨ s = ♦a ∨ ((♦a ∨ ♦b) ∧ (a∼ ∨ b∼))

= ♦a ∨ ♦b (Thm. 3.1 in SK (L) )

= ♦b ∨ s.

Similarly, �a ∨ t = �b ∨ t.
(ii) implies (iii).

Suppose that there exist s, t ∈ I such that ♦a∨ s = ♦b∨ s and �a∨ t =

�b ∨ t. First, we prove (♦b)∼ e ♦a ∈ I.

(♦b)∼ e ♦a = b∼ ∧ (♦b ∨ ♦a)

≤ b∼ ∧ (♦s ∨ ♦b ∨ ♦a)

= b∼ ∧ (♦ (s ∨ ♦a) ∨ ♦b)
= b∼ ∧ (♦ (s ∨ ♦b) ∨ ♦b)
= b∼ ∧ (♦b ∨ ♦s)
= (♦b)∼ e ♦s.

Since I is a p-ideal of L and s ∈ I, we have that (♦b)∼ e ♦s ∈ I and

therefore (♦b)∼ e ♦a ∈ I. The remaining conditions are proved similarly

and thus (a, b) ∈ ρ (I).
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(iii) implies (i).

Suppose (a, b) ∈ ρ (I); we prove that (♦a ∨ ♦b) ∧ (a∼ ∨ b∼) ∈ I. By

assumption,

(a∼ ∧ (♦a ∨ ♦b)) ∨ (b∼ ∧ (♦b ∨ ♦a)) = ((♦a)∼ e ♦b) ∨ ((♦b)∼ e ♦a) ∈ I.

By Theorem 3.1 applied to SK (L), however,

(a∼ ∧ (♦a ∨ ♦b)) ∨ (b∼ ∧ (♦b ∨ ♦a)) = (♦a ∨ ♦b) ∧ (a∼ ∨ b∼) ,

whence our claim follows. A similar proof establishes the other claim. �

Theorem 4.6. Let L be a PBZ*-lattice, and let I be a p-ideal of L.

Then ρ (I) is an equivalence relation on L that preserves the operations ′

and ∼.

Proof. Since, for all a ∈ L, (♦a)∼ e ♦a, (�a)∼ e �a = 0 ∈ I, ρ (I) is

reflexive. Symmetry is trivial. For transitivity, suppose (a, b) , (b, c) ∈ ρ (I).

By Theorem 4.5, there exist:

• s1, t1 ∈ I such that ♦a ∨ s1 = ♦b ∨ s1 and �a ∨ t1 = �b ∨ t1;

• s2, t2 ∈ I such that ♦b ∨ s2 = ♦c ∨ s2 and �b ∨ t2 = �c ∨ t2.

Thus s1∨s2 ∈ I and ♦a∨s1∨s2 = ♦b∨s1∨s2 = ♦c∨s1∨s2, and similarly

for the other condition, whence by Theorem 4.5 again, (a, c) ∈ ρ (I). The

unary operations are clearly preserved. �

Although ρ (I) is always an equivalence relation, it need not always be

a congruence, as the next example shows.

Example 4.7. Consider the distributive antiortholattice whose lattice

reduct is the ordinal sum of D2
2 with itself, with atoms a, b and the fixpoint

c = c′. Observe that (a, c) ∈ ρ ({0}), because ♦a = ♦c = 1 and �a = �c =

0. However, ♦ (a ∧ b) = ♦0 = 0 and ♦ (c ∧ b) = ♦b = 1, whence ρ ({0})
does not preserve meets.

Our next goal is to tweak the notion of p-ideal in such a way that its

associated equivalence is necessarily a congruence.

Definition 4.8. Let L be a PBZ*-lattice, and let I be a p-ideal of L. I

is a weak De Morgan ideal iff for all a, b ∈ L, whenever (a, b) ∈ ρ (I), then

for all c ∈ L it is the case that ♦ (a ∧ c)∼ e ♦ (b ∧ c) ∈ I.
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Lemma 4.9. Let L be a PBZ*-lattice, and let I be a p-ideal of L. The

following conditions are equivalent:

(i) ρ (I) is a congruence;

(ii) I is a weak De Morgan ideal.

Proof. (i) implies (ii). Suppose that ρ (I) is a congruence and let

(a, b) ∈ ρ (I), c ∈ L. Then (♦ (a ∧ c) ,♦ (b ∧ c)) ∈ ρ (I). It follows that

(♦(a ∧ c)∼ e ♦(b ∧ c), 0) ∈ ρ(I), which implies ♦ (a ∧ c)∼ e ♦ (b ∧ c) ∈ I.

(ii) implies (i). Let I be a weak De Morgan ideal. By Theorem 4.6,

to attain our conclusion it will suffice to show that ρ (I) preserves meets.

Thus, let (a, b) ∈ ρ (I) and c ∈ L. In virtue of our assumption, ♦ (a ∧ c)∼ e
♦ (b ∧ c) ∈ I and, taking into account the symmetry of ρ (I), ♦ (b ∧ c)∼ e
♦ (a ∧ c) ∈ I. It remains to show that

(� (a ∧ c))∼ e � (b ∧ c) , (� (b ∧ c))∼ e � (a ∧ c) ∈ I.

However, since (a, b) ∈ ρ (I) and ρ (I) preserves the unary operations,

(�a,�b) ∈ ρ (I). Given that I is a weak De Morgan ideal, thus,

(� (a ∧ c))∼ e � (b ∧ c) = ♦ (a′ ∨ c′) e (b′ ∨ c′)∼

= (�a ∧�c)∼ e ♦ (�b ∧�c)
= ♦ (�a ∧�c)∼ e ♦ (�b ∧�c) ∈ I.

Similarly, (� (b ∧ c))∼ e � (a ∧ c) ∈ I. �

.4.2 Ideals in the Strong De Morgan Subvariety

The subvariety of PBZL∗ that is axiomatised relative to PBZL∗ by the

Strong De Morgan law SDM, here labelled SDM, includes OML and stands

out for its smooth theory of ideals. In fact, we have that:

Lemma 4.10. Let L ∈ SDM, and let I be a p-ideal of L. Then I is

a weak De Morgan ideal and therefore ρ (I) is a congruence.

Proof. If (a, b) ∈ ρ (I), then (a∼, b∼) ∈ ρ (I) by Theorem 4.6. Thus,

Theorem 4.5 guarantees that there is s ∈ I such that a∼ ∨ s = ♦a∼ ∨ s =

♦b∼ ∨ s = b∼ ∨ s. Then, for an arbitrary c ∈ L, a∼ ∨ c∼ ∨ s = b∼ ∨
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c∼ ∨ s. Applying SDM, we have that � ((a ∧ c)∼) ∨ s = (a ∧ c)∼ ∨ s =

(b ∧ c)∼ ∨ s = � ((b ∧ c)∼) ∨ s. A further recourse to Theorem 4.5 yields

((a ∧ c)∼ , (b ∧ c)∼) ∈ ρ (I), whence (♦ (a ∧ c) ,♦ (b ∧ c)) ∈ ρ (I), which im-

plies, in particular, that I is weak De Morgan. Lemma 4.9 takes care of

the remaining claim. �

We are now in a position to prove that within the boundaries of this

subvariety, p-ideals coincide with ideals in the sense of Ursini.

Theorem 4.11. If L ∈ SDM, then the class of p-ideals of L coincides

with ISDM (L).

Proof. Let I ∈ ISDM (L), whence by Theorem 2.20.(i) I = 0/θ for

some θ ∈ ConBZL (L). Clearly, I is a lattice ideal of L. Furthermore, if

a ∈ I, then (♦a, 0) ∈ θ and then ♦a ∈ I. What remains to show is that,

for an arbitrary b ∈ L, ♦b e ♦a ∈ I. Since ♦a ∈ I = 0/θ, (♦b e ♦a, 0) =

(♦b e ♦a,♦b e 0) ∈ θ, which means ♦b e ♦a ∈ I. Conversely, it will be

enough to prove that if I is a p-ideal of L, then I = 0/ρ (I). However, by

Theorem 4.5,

0/ρ (I) = {a ∈ L : (a, 0) ∈ ρ (I)}
= {a ∈ L : ♦a ≤ s,�a ≤ t for some s, t ∈ I} .

If a ∈ I, then choose s = t = ♦a ∈ I to obtain a ∈ 0/ρ (I). If a ∈ 0/ρ (I),

then there is s ∈ I such that a ≤ ♦a ≤ s, whence a ∈ I. �

Observe that, by Lemma 4.10 and Theorem 4.11, whenever L ∈ SDM,

all members of ISDM (L) are weak De Morgan ideals.

Theorem 4.12. Let L ∈ SDM, and let I ∈ ISDM (L). Then ρ (I) = Iε.

Proof. By the proof of Theorem 4.11 0/ρ (I) = I, whence ρ (I) ⊆ Iε.

For the converse inequality, suppose (a, b) ∈ Iε. Since Iε is a congruence,

((♦a ∨ ♦b) ∧ (a∼ ∨ b∼) , 0) , ((�a ∨�b) ∧ ((�a)∼ ∨ (�b)∼) , 0) ∈ Iε.

So (♦a ∨ ♦b) ∧ (a∼ ∨ b∼) ∈ 0/Iε = I and (�a ∨�b) ∧ ((�a)∼ ∨ (�b)∼) ∈
0/Iε = I. By Theorem 4.5, this means that (a, b) ∈ ρ (I). �
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Corollary 4.13. SDM is finitely congruential.

Proof. We have to find a finite set of terms {di (x, y)}i≤n that witnesses

finite congruentiality according to Definition 2.22. Thus, let

d1 (x, y) = (♦x)∼ e ♦y, d2 (x, y) = (♦y)∼ e ♦x,
d3 (x, y) = (�x)∼ e �y, d4 (x, y) = (�y)∼ e �x.

If L ∈ SDM and I ∈ ISDM (L), then by Theorems 4.12 and 4.5 ρ (I) =

Iε. As a result, (a, b) ∈ Iε = ρ (I) iff dAi (a, b) ∈ I, for all i ≤ 4. �

Theorem 4.14. The 0-assertional logic of PBZL∗ is not equivalential.

Proof. Consider again the antiortholattice of Example 4.7. Being sim-

ple, this antiortholattice belongs to PBZL∗ε. Moreover, the set {0, a, a′, 1}
is a subuniverse of such, isomorphic to D4, and its middle congruence, that

collapses only a and a′, is a nonzero pseudo-identical congruence. Our claim

follows then from Theorem 2.24. �

Lemma 4.15. Let L ∈ SDM. The following are equivalent:

(i) ρ ({0}) = ∆L.

(ii) L satisfies the quasi-identity �x ≤ �y&♦x ≤ ♦y ⇒ x ≤ y.

(iii) L satisfies the identity SK.

Proof. (i) implies (ii). ρ ({0}) = ∆L means that modally equivalent

elements of L are identical. Now, let �a ≤ �b and ♦a ≤ ♦b. By SDM, this

implies that a ∧ b and a are modally equivalent, whence a ≤ b.
(ii) implies (iii). Using SDM, we have that for all a, b ∈ L,

� (a ∧ ♦b) = �a ∧ ♦b ≤ �a ∨�b = � (�a ∨ b) ;

♦ (a ∧ ♦b) = ♦a ∧ ♦b ≤ �a ∨ ♦b = ♦ (�a ∨ b) .

By our assumption, then, a ∧ ♦b ≤ �a ∨ b.
(iii) implies (i). Suppose �a = �b and ♦a = ♦b. Then

a = a ∧ ♦a = a ∧ ♦b ≤ �a ∨ b = �b ∨ b = b.

Similarly, b ≤ a, whence our conclusion. �

Let us call SK the subvariety of SDM that is axiomatised relative to

SDM by the identity SK.
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Theorem 4.16. The 0-assertional logic of SDM is strongly algebrais-

able with equivalent variety semantics SDMε = SK.

Proof. By Theorem 2.25, it suffices to establish that SDMε is a variety,

which would follow if we were to show that SDMε = SK. By Theorem

4.12, whenever L belongs to SDM, {0}ε = ρ ({0}). Thus L ∈ SDMε iff

ρ ({0}) = ∆L, and by Lemma 4.15, this happens exactly when L ∈ SK. �

By Theorems 2.23 and 4.11, in any member L of SDM the Ursini ideals

of L coincide with its p-ideals and with the deductive filters on L of the

0-assertional logic of SDM. By [13, Thm. 3.58], therefore, we obtain:

Corollary 4.17. Let L ∈ SDM. Then the lattice of p-ideals of L is

isomorphic to the lattice of all congruences θ on L such that L/θ ∈ SK.

Observe that, although SK implies SDM in the context of V (AOL)

[15, Lm. 3.8] this is not the case in the more general context of PBZL∗.
In fact, consider the PBZ*-lattice L whose lattice reduct is the 5-element

modular and non-distributive lattice M3 with atoms a, a′, b, where b = b′

and b∼ = 0. Then L satisfies SK but fails SDM - actually, it fails even

WSDM because a ∈ SK (L) and (a ∧ b)∼ = 1 but a∼ ∨ b∼ = a′. For future

reference, we make a note of the fact that L satisfies J2.

.4.3 Ideals in V(AOL)

Another subvariety of PBZL∗ where our description of ideals can be consid-

erably simplified is the variety V(AOL) generated by all antiortholattices.

Bignall and Spinks first observed that the variety of distributive BZ-lattices

is a binary discriminator variety [4]. We extend their observation by notic-

ing that V(AOL) is itself a binary discriminator variety.

Proposition 4.18. V(AOL) is a 0-binary discriminator variety.

Proof. Referring to Definition 2.26 for notation and terminology, let

bL0 (x, y) = x ∧ y∼. Then for any antiortholattice L and, for any a, c ∈ L,

bL0 (a, 0) = a ∧ 0∼ = a ∧ 1 = a, while, if c > 0, then bL0 (a, c) = a ∧ c∼ =

a ∧ 0 = 0. �

Among the consequences of this remark we have a very slender descrip-

tion of V(AOL)-ideals. In fact, recall from [4] that if A is an algebra in
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a 0-binary discriminator variety V and b0 (x, y) is the term witnessing this

property for V, I ⊆ A is a V-ideal of A exactly when, for any a, c ∈ A, if

c ∈ I and bA0 (a, c) ∈ I, then a ∈ I. Therefore:

Proposition 4.19. Let L ∈ V(AOL). For a lattice ideal I ⊆ L the

following are equivalent:

(i) I is a V(AOL)-ideal.

(ii) For any a, b ∈ L, if b ∈ I and a ∧ b∼ ∈ I, then a ∈ I.

(iii) I is closed w.r.t. all interpretations in L of the V(AOL)-ideal term

(in y, z):

u (x, y, z) = x ∧ ♦ (y ∨ z) .

Proof. The equivalence of (i) and (ii) follows from the remarks im-

mediately preceding this lemma. Suppose now that (ii) holds, and that

a, b ∈ I. Then a ∨ b ∈ I. On the other hand, for any c in L,

0 = c ∧ ♦ (a ∨ b) ∧ (a ∨ b)∼ ∈ I,

whence by our hypothesis c∧♦ (a ∨ b) ∈ I. Conversely, under the assump-

tion (iii), let b ∈ I and a ∈ L be such that a∧ b∼ ∈ I. Then, using WSDM

and Lemma 2.14 several times,

uA (a, b, a ∧ b∼) = a ∧ ♦ (b ∨ (a ∧ b∼))

= a ∧ (♦b ∨ ♦ (a ∧ b∼))

= a ∧ (♦b ∨ (♦a ∧ b∼))

= a ∧ (♦b ∨ ♦a)

= (a ∧ ♦b) ∨ a = a,

hence a ∈ I. �

.5 Axiomatic Bases for Some Subvarieties

The goal of this final section is to simplify the axiomatisation of V(AOL)

given in [14] and to solve a problem (here called the Join Problem) posed

in [15], where it was observed that the varietal join OML∨V(AOL) in the

lattice of subvarieties of PBZL∗ was strictly included in PBZL∗, but no

axiomatic basis for such a join was given.
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.5.1 A Streamlined Axiomatisation for V(AOL)

In Theorem 2.15.(i) we recalled that an equational basis for V(AOL) rela-

tive to PBZL∗ is given by the identities AOL1-AOL3, here reproduced for

the reader’s convenience:

(AOL1) (x∼ ∨ y∼) ∧ (♦x ∨ z∼) ≈ ((x∼ ∨ y) ∧ (♦x ∨ z))∼ ;

(AOL2) x ≈ (x ∧ y∼) ∨ (x ∧ ♦y) ;

(AOL3) x ≈ (x ∨ y∼) ∧ (x ∨ ♦y) .

The aim of this subsection is showing that AOL2 suffices to derive the

remaining two axioms. For a start, we notice that Lemma 2.14 does not

depend on AOL1, whence it holds for any subvariety of PBZL∗ that satisfies

AOL2 and AOL3.

Lemma 5.1. Let L be a member of PBZL∗ that satisfies AOL2 and

AOL3. Then, for any a, b, c ∈ L: (i) a ∧ b ≤ (a ∧ c∼) ∨ (b ∧ ♦c); (ii)

(a ∧ ♦b)∼ ∨ ♦b = 1; (iii) ♦a ≤ (b ∧ a∼)∼.

Proof. (i) In fact, using Lemma 2.14,

a ∧ b ≤ (a ∨ c∼) ∧ (b ∨ ♦c) ∧ (a ∨ b) = (a ∧ c∼) ∨ (b ∧ ♦c) .

(ii) Since a ∧ ♦b ≤ ♦b, it follows that b∼ ≤ (a ∧ ♦b)∼, whence 1 =

b∼ ∨ ♦b ≤ (a ∧ ♦b)∼ ∨ ♦b.
(iii) Since b ∧ a∼ ≤ a∼, our conclusion follows. �

Lemma 5.2. Let L be a member of PBZL∗ that satisfies AOL2 and

AOL3. Then L satisfies AOL1 iff it satisfies WSDM.

Proof. From left to right, WSDM can be obtained by taking y = 0

and applying Lemma 2.14.(iii). Conversely, let L satisfy WSDM, and let

a, b, c ∈ L. Then:

((a∼ ∨ b) ∧ (♦a ∨ c))∼ = ((a∼ ∧ c) ∨ (♦a ∧ b) ∨ (b ∧ c))∼ Lm. 2.14

= ((a∼ ∧ c) ∨ (♦a ∧ b))∼ Lm. 5.1.(i)

= (a∼ ∧ c)∼ ∧ (♦a ∧ b)∼ Lm. 2.6.(iii)

= (a∼ ∨ b∼) ∧ (♦a ∨ c∼) WSDM

�
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Theorem 5.3. An equational basis for V(AOL) relative to PBZL∗ is

given by the single identity AOL2.

Proof. By Theorem 2.15.(i), an equational basis for V(AOL) relative

to PBZL∗ is given by the identities AOL1-AOL3. To attain our conclusion,

taking into account Lemma 5.2, it will suffice to show that: i) any subvari-

ety of PBZL∗ that satisfies AOL2 and AOL3 also satisfies WSDM; ii) any

subvariety of PBZL∗ that satisfies AOL2 also satisfies AOL3. We establish

these claims in reverse order.

i) Let L belong to any subvariety of PBZL∗ that satisfies AOL2, and

let a, b ∈ L. Then a′ = (a′ ∧ b∼) ∨ (a′ ∧ ♦b), whence

a =
((
a′ ∧ b∼

)
∨
(
a′ ∧ ♦b

))′
=
(
a′ ∧ b∼

)′ ∧ (a′ ∧ ♦b)′ = (a ∨ ♦b)∧ (a ∨ b∼) .

ii) Let L belong to any subvariety of PBZL∗ that satisfies AOL2 (thus

also AOL3, by the previous item), and let a, b ∈ L. Then:

a∼ ∨ ♦b = ((a ∧ b∼) ∨ (a ∧ ♦b))∼ ∨ ♦b AOL2

= ((a ∧ b∼)∼ ∧ (a ∧ ♦b)∼) ∨ ♦b Lm. 2.6.(iii)

= ((a ∧ b∼)∼ ∨ ♦b) ∧ ((a ∧ ♦b)∼ ∨ ♦b) Lm. 2.14

= ((a ∧ b∼)∼ ∨ ♦b) Lm. 5.1.(ii)

= (a ∧ b∼)∼ Lm. 5.1.(iii).

�

Taking into account Lemma 3.5 and Theorem 3.8, we have that:

Corollary 5.4. (i) V(AOL) is the class of all PBZ*-lattices L such

that Cp(L) = SK(L).

(ii) V(AOL) is the class of all PBZ*-lattices L that satisfy WSDM and

are such that Cpbz(L) = SK(L).

(iii) The class of the directly indecomposable members of V(AOL) is AOL.

.5.2 The Join Problem

We round off this paper by axiomatising the variety OML∨V(AOL), as

well as some of its notable subvarieties. Let:
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• V1 be the variety of PBZ*-lattices that is axiomatised relative to

PBZL∗ by the identities J2 and WSDM;

• V2 be the variety of PBZ*-lattices that is axiomatised relative to

PBZL∗ by the identities J2 and SDM;

• V3 be the variety of PBZ*-lattices that is axiomatised relative to

PBZL∗ by the identities J2, WSDM, and SK.

Taking into account the results in [15] and [14], as well as Theorem

5.3, in V(AOL), SK implies SDM, that is AOL2 and SK imply SDM, while

AOL2 and SDM do not imply SK. We observed in Section 4 that J2 and SK

do not imply WSDM (all the more so, thus, SDM). The following PBZ*-

lattice:

satisfies SK and SDM and fails J2. The 4-element antiortholattice chain D4

fails SK but satisfies SDM and AOL2, thus also J2. Therefore, in the sets of

axioms {J2, SK, SDM} and {J2, SK, WSDM}, each axiom is independent

from the other two.

Given any L ∈ PBZL∗, it will be expedient to denote by T (L) the set

{x ∈ L : x∼ = 0} ∪ {0}.

Lemma 5.5. Let L be a PBZ*-lattice that satisfies WSDM and such

that SK(L)∪ T (L) = L. Then if b ∈ SK(L) and c /∈ SK(L), it follows that

either b = 1 or b ≤ c.

Proof. If b ∧ c ∈ SK(L), then

b ∧ c = ♦ (b ∧ c) = ♦b ∧ ♦c = b ∧ 1 = b,

where WSDM can be applied to obtain the second equality because b ∈
SK(L), while the third equality follows from the fact that c /∈ SK(L),
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whence c∼ = 0. On the other hand, if b ∧ c /∈ SK(L), then we apply again

WSDM (as b ∈ SK(L)) and the assumption that SK(L) ∪ T (L) = L,

obtaining

0 = (b ∧ c)∼ = b∼∨c∼ =b∼∨0 = b∼,

whereby b = 1 since b ∈ SK(L). �

Proposition 5.6. Any directly indecomposable L ∈V1 is either ortho-

modular or an antiortholattice.

Proof. Let L be as in the statement of the proposition, and suppose

that L is directly indecomposable, but is neither orthomodular nor an an-

tiortholattice. By Theorem 3.8, the only PBZ*-central elements of L are 0

and 1. By WSDM and Lemma 3.5.(iii) we conclude that 0 and 1 are the

only sharp elements a such that b = (b ∧ a∼) ∨ (b ∧ ♦a) for all b ∈ L.

Now, we want to show that SK(L)∪T (L) = L. Let x ∈ L. The element

♦ (x ∧ x′) is sharp and, by J2, we have that

b =
(
b ∧
(
x ∧ x′

)∼)∨(b ∧ ♦ (x ∧ x′)) =
(
b ∧ ♦

(
x ∧ x′

)∼)∨(b ∧ ♦♦ (x ∧ x′))
for all b ∈ L. So, ♦ (x ∧ x′) ∈ {0, 1}. If ♦ (x ∧ x′) = 0, then x ∧ x′ ≤
♦ (x ∧ x′) = 0, whence x ∈ SK(L). If ♦ (x ∧ x′) = 1, then

x∼ ≤x∼ ∨�x =
(
x ∧ x′

)∼ = 0,

and x ∈ T (L). Our claim is therefore settled.

Recall that L is directly indecomposable but fails to be an antiortho-

lattice — whence by Corollary 5.4.(iii) there exist a, b ∈ L such that

a > (a ∧ b∼) ∨ (a ∧ ♦b). Also, recall throughout the remainder of this

proof that SK(L) ∪ T (L) = L. If b /∈ SK(L), then

a > (a ∧ b∼) ∨ (a ∧ ♦b) = a,

a contradiction. Therefore b ∈ SK(L) and we can apply Lemma 5.5: either

b = 1, or b ≤ x for every x /∈ SK(L). If b = 1, then a > a, a contradiction

again. If there is some c /∈ SK(L), then b ≤ c, whence b = �b ≤ �c = 0,

which yields again the contradiction a > a. Therefore L = SK(L) and L is

orthomodular, against our assumption. �
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Theorem 5.7. (i) V1= OML∨V(AOL).

(ii) V2= OML ∨ SAOL.

(iii) V3= OML ∨V(D3).

Proof. (i) It will suffice to show that any subdirectly irreducible L ∈ V1

is either an orthomodular lattice or an antiortholattice. However, since

L is directly indecomposable, Proposition 5.6 applies and we obtain our

conclusion.

(ii) Any subdirectly irreducible, and thus directly indecomposable, mem-

ber of V2 is either orthomodular, or an antiortholattice satisfying SDM;

since SAOL is generated by such antiortholattices, our claim follows.

(iii) This follows, as above, from the fact that V(D3) is axiomatised by

SK relative to V(AOL) [15, Cor. 3.3]. �

An upshot of this theorem is that V3 ⊂ V2 ⊂ V1 ⊂ SDM ∨ V(AOL),

where the last strict inclusion is witnessed by the PBZ*-lattice H above

which satisfies SDM, thus also WSDM, but fails J2, thus showing in passing

that V2 ⊂ SDM. Note, also, that V3 is the unique cover of OML in the

lattice of subvarieties of PBZL∗, because any member of such which is not

included in OML contains D3 [14, Thm. 5.5].
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[3] P. Aglianò, A. Ursini, On subtractive varieties IV: Definability of principal ideals,

Algebra Universalis 38 (1997), 355–389.

[4] R. Bignall, M. Spinks, On binary discriminator varieties, I, II, and III, typescript.

[5] G. Bruns, J. Harding, Algebraic aspects of orthomodular lattices, In: Current Re-

search in Operational Quantum Logic (Eds. B. Coecke et al.), Springer, Berlin, 2000,

pp. 37–65.

[6] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in

Mathematics 78, Springer–Verlag, New York–Berlin, 1981.

[7] G. Cattaneo, M.L. Dalla Chiara, R. Giuntini, Some algebraic structures for many-

valued logicst, Tatra Mountains Mathematical Publications 15 (1998), 173–196.

[8] G. Cattaneo, R. Giuntini, R. Pilla, BZMV and Stonian MV algebras (applications to

fuzzy sets and rough approximations), Fuzzy Sets and Systems 108 (1999), 201–222.
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