PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Improved Safe Method for the Synthesis of Ammonium 5-Nitrotetrazolate (ANT), a Key Intermediate for the Synthesis of Green Energetic Materials (GEMs)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ammonium 5-nitrotetrazolate (ANT) is an important precursor for the synthesis of green energetic materials (GEMs), including lead/mercury-free environmentally benign primary explosives. The currently employed methods for the synthesis of ANT are hazardous, use an excess of organic solvents/reagents and thus generate effluent. Furthermore, these methods offer low yields of ANT as they involve multistep processes. We describe herein an improved, safe and convenient method for the synthesis of ANT, which greatly improves the process safety and product yield. The advantage of this method is that it avoids hazardous operations, such as the isolation and handling of acidic copper(II) nitrotetrazolate, an extremely sensitive explosive intermediate during the preparation of ANT. In our procedure, 5-aminotetrazole (5-AT) is diazotized with sodium nitrite and nitric acid in the presence of a copper salt. The sensitive copper acid salt thus formed from the reaction mixture is treated in situ with aqueous barium hydroxide to convert it to barium 5-nitrotetrazolate and insoluble copper oxide. Finally, the aqueous barium 5-nitro-1H-tetrazolate (BaNT) is treated with ammonium sulfate to yield ammonium 5-nitrotetrazolate (ANT) in good yield. The synthesized ANT was characterized by its physicochemical properties using spectral and thermal techniques. The purity of the ANT was measured by HPLC and ion chromatography (IC). Furthermore, the structure of ANT was confirmed by single crystal X-ray analysis.
Rocznik
Strony
861--875
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, 411021 Pune, India
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, 411021 Pune, India
Bibliografia
  • [1] Klapötke, T. M. High Energy Density Materials. (Klapötke, T. M., Ed.) Springer, Berlin, Heidelberg 2007, pp. 85-122; ISBN: 978-3-540-72201-4.
  • [2] Hammerl, A.; Holl, G.; Klapötke, T. M.; Mayer, P.; Noth, H.; Piotrowski, H.; Warchhold, M. Salts of 5,5′-Azotetrazolate. Eur. J. Inorg. Chem. 2002, 4: 834-845.
  • [3] Klapötke, T. M.; Mayer, P.; Schulz, A.; Weigand, J. J. 1,5-Diamino-4-methyltetrazolium Dinitramide. J. Am. Chem. Soc. 2005, 127: 2032-2033.
  • [4] (a) Singh, R. P.; Gao, H.; Meshri, D. T.; Shreeve, J. M. High Energy Density Materials. (Klapötke, T. M., Ed.) Springer, Berlin, Heidelberg 2007, pp. 35-84;ISBN 978-3-540-72201-4; (b) Sivabalan, R.; Anniyappan, M.; Pawar, S. J.; Talawar, M. B.; Gore, G. M.; Venugopalan, S.; Gandhe, B. R. Synthesis, Characterization and Thermolysis Studies on Triazole and Tetrazole Based High Nitrogen Content High Energy Materials. J. Hazard. Mater. 2006, 137: 672-680.
  • [5] Kohler, J.; Meyer, R. Explosivstoffe. Wiley-VCH, Weinheim, 9th ed, 1998; ISBN 978-3-527-62583-3.
  • [6] Oga, S. Method for Producing Bitetrazole Amine Compound. Jpn. Kokai Tokkyo Koho, JP2006249061, p. A20060921, 2006.
  • [7] (a) Klapötke, T. M.; Holl, G.; Geith, J.; Hammerl, A.; Weigand, J. J. New High Explosives and Propellants Based on Biuret and Tetrazole Compounds. New Trends Res. Energ. Mater., Proc. Semin., 7th, Pardubice, Czech Republic 2004; (b) Damse, R. S.; Sikder, A. K. Suitability of Nitrogen Rich Compounds for Gun Propellant Formulations. J. Hazard Mater. 2009, 166: 967-71.
  • [8] (a) Klapötke, T. M.; Stierstorfer, J. The New Energetic Compounds 1,5-Diaminotetrazolium and 5-Amino-1-methyltetrazolium Dinitramide – Synthesis, Characterization and Testing. Eur. J. Inorg. Chem. 2008, 26: 4055-4062; (b) Klapötke, T. M.; Stierstorfer, J.; Wallek, A. U. Nitrogen-Rich Salts of 1-Methyl-5-nitriminotetrazolate: An Auspicious Class of Thermally Stable Energetic Materials. Chem. Mater. 2008, 20: 4519-4530.
  • [9] (a) Geisberger, G.; Klapötke, T. M.; Stierstorfer, J. Copper Bis(1-methyl-5-nitriminotetrazolate): A Promising New Primary Explosive. Eur. J. Inorg. Chem. 2007, 30: 4743-4750; (b) Talawar, M. B.; Agrawal, A. P.; Anniyappan, M.; Wani, D. S.; Bansode, M. K.; Gore, G. M. Primary Explosives: Electrostatic Discharge Initiation, Additive Effect and its Relation to Thermal and Explosive Characteristics. J. Hazard. Mater. 2006, 137: 1074-1078.
  • [10] Demko, Z. P.; Sharpless, K. B. Preparation of 5-Substituted 1H-Tetrazoles from Nitriles in Water. J. Org. Chem. 2001, 66: 7945-7950.
  • [11] Adam, D.; Karaghiosoff, K.; Holl, G.; Kaiser, M.; Klapötke, T. M. Triazidotrinitro Benzene: 1,3,5-(N3)3-2,4,6-(NO2)3C6. Propellants Explos. Pyrotech. 2002, 27: 7-11.
  • [12] Karaghiosoff, K.; Klapötke, T. M.; Michailovski, A.; Noth, H.; Suter, M. 1,4-Diformyl-2,3,5,6-tetranitratopiperazine: A New Primary Explosive Based on Glyoxal. Propellants Explos. Pyrotech. 2003, 28: 1-6.
  • [13] Boese, R.; Klapötke, T. M.; Mayer, P.; Verma, V. Synthesis and Characterization of 1-Azido-2-nitro-2-azapropane and 1-Nitrotetrazolato-2-nitro-2-azapropane. Propellants Explos. Pyrotech. 2006, 31: 263-268.
  • [14] Klapötke, T. M.; Sabate, C. M.; Welch, J. M. Alkali Metal 5-Nitrotetrazolate Salts: Prospective Replacements for Service Lead(II) Azide in Explosive Initiators. Dalton Trans. 2008, 45: 6372-6380.
  • [15] (a) Huynh, M. H. V.; Coburn, M. D.; Meyer, T. J.; Wetzler, M. Green Primary Explosives: 5-Nitrotetrazolato-N2-ferrate Hierarchies. Proc. Natl. Acad. Sci. USA 2006, 103: 10322-10327; (b) Huynh, M. H. V.; Hiskey, M. A.; Meyer, T. J.; Wetzler, M. Green Primaries: Environmentally Friendly Energetic Complexes. Proc. Natl. Acad. Sci. USA 2006, 103: 5409-5412.
  • [16] (a) Xue, H.; Twamley, B.; Shreeve, J. M. Energetic Azolium Azolate Salts. Inorg. Chem. 2006, 44: 7009-7013; (b) Xue, H.; Shreeve, J. M. Energetic Ionic Liquids from Azido Derivatives of 1,2,4-Triazole. Adv. Mater. 2005, 17: 2142-2146; (c) Xue, H.; Gao, Y.; Twamley, B.; Shreeve, J. M. Energetic Azolium Azolate Salts. Inorg. Chem. 2005, 44: 5068-5072; (d) Xue, H.; Gao, H.; Twamley, B.; Shreeve, J. M. Energetic Nitrate, Perchlorate, Azide and Azolate Salts of Hexamethylenetetramine. Eur. J. Inorg. Chem. 2006, 15: 2959-2965.
  • [17] (a) Klapötke, T. M.; Karaghiosoff, K.; Mayer, P.; Penger, A.; Welch, J. M. Synthesis and Characterization of 1,4-Dimethyl-5-aminotetrazolium 5-Nitrotetrazolate. Propellants Explos. Pyrotech. 2006, 31: 188-195; (b) Darwich, C.; Klapötke, T. M.; Welch, J. M.; Suceska, M. Synthesis and Characterization of 3,4,5-Triamino-1,2,4-triazolium 5-Nitrotetrazolate. Propellants Explos. Pyrotech. 2007, 32: 235-243.
  • [18] Klapötke, T. M.; Piercey, D. G.; Mehta, N.; Oyler, K. D.; Jorgensen, M.; Lenahan, S.; Salan, J. S.; Fronabarger, J. W.; Williams, M. D. Preparation of High Purity Sodium 5-Nitrotetrazolate (NaNT): An Essential Precursor to the Environmentally Acceptable Primary Explosive, DBX-1. Z. Anorg. Allg. Chem. 2013, 639(5): 681-688.
  • [19] Klapötke, T. M.; Piercey, D. G.; Mehta, N.; Oyler, K. D.; Sabatini, J. J. Reaction of Copper(I) Nitrotetrazolate (DBX-1) with Sodium m-Periodate. Z. Naturforsch., Part B 2014, 69b: 125-127.
  • [20] (a) Von Herz, V., C-Nitrotetrazole Compounds, C-Nitrotetrazole Compounds. Patent US 2,066,954, 1937; (b) Gilligan, W. H.; Kamlet, M. J. Method of Preparing the Acid Copper Salt of 5-Nitrotetrazole. Patent US 4,093,623, 1978; (c) Klapötke, T. M.; Sabaté, C. M.; Welch, J. M. Alkaline Earth Metal Salts of 5-Nitro-2H-tetrazole: Prospective Candidates for Environmentally Friendly Energetic Applications. Eur. J. Inorg. Chem. 2009, 769-776.
  • [21] Klapötke, T. M.; Sabaté, C. M.; Rasp, M. Synthesis and Properties of 5-Nitrotetrazole Derivatives as New Energetic Materials. J. Mater. Chem. 2009, 19: 2240-2252.
  • [22] (a) Klapötke, T. M.; Mayer, P.; Sabate, C. M.; Welch, J. M.; Wiegand, N. Simple, Nitrogen-rich, Energetic Salts of 5-Nitrotetrazole. Inorg. Chem. 2008, 47, 6014-6027; (b) Lee, K-Y.; Coburn, M. D. Ethylenediamine Salt of 5-Nitrotetrazole and Preparation. Patent US 4,552,598, 1985.
  • [23] Bruker (2006). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA 2006.
  • [24] Sheldrick, G. M. A Short History of SHELX. Acta Cryst. 2008, A64: 112-122.
  • [25] Farrugia, L. J. ORTEP-3 for Windows – a Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Cryst. 1997, 30: 565; Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van de Streek, J.; Wood, P. A. Mercury CSD 2.0 – New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466.
  • [26] Spek, A. L. Single-crystal Structure Validation with the Program PLATON. J. Appl. Cryst. 2003, 36: 7-13.
  • [27] Spek, A. L. Structure Validation in Chemical Crystallography. Acta Cryst. 2009, D65, 148-155.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9943941-09f1-4371-9228-c8e8fc915ef0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.