PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Numerical Analysis of the Phenomena of Superficial Hardening of the Hot-Work Tool Steel Elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza numeryczna zjawisk przypowierzchniowego hartowania elementów ze stali narzędziowej do pracy na gorąco
Języki publikacji
EN
Abstrakty
EN
In the paper the complex model of hardening of the hot-work tool steel is presented. Model of estimation of phase fractions and their kinetics is based on the continuous heating diagram (CHT) and cooling diagram (CCT). Phase fractions which occur during the continuous heating and cooling (austenite, pearlite or bainite) are described by Johnson-Mehl (JM) formula. To determine of the formed martensite the modified Koistinen-Marburger (KM) equation is used. Model takes into account the thermal, structural, plastic strains and transformation plasticity. To calculate the plastic strains the Huber-Mises plasticity condition with isotopic hardening is used. Whereas to determine transformations induced plasticity the Leblond model is applied. The numerical analysis of phase compositions and residual stresses in the hot-work steel (W360) element is considered.
PL
W pracy przedstawiono kompleksowy model hartowania stali narzędziowej do pracy na gorąco. Model szacowania ułamków faz oraz ich kinetyki oparto na wykresach ciągłego nagrzewania (CTPA) oraz chłodzenia (CTPc). Ułamki faz powstałych podczas ciągłego nagrzewania i chłodzenia (austenit, perlit lub bainit) wyznaczane są równaniem Johnsona- Mehla. Do określenia tworzącego się martenzytu wykorzystano zmodyfikowane równanie Koistinena i Marburgera. W modelu uwzględniono odkształcenia cieplne, strukturalne, plastyczne oraz odkształcenia transformacyjne. Do wyznaczania odkształceń plastycznych zastosowano warunek plastyczności Hubera-Misesa ze wzmocnieniem izotropowym, natomiast do wyznaczenia odkształceń transformacyjnych wykorzystano model Leblonda. Dokonano analizy numerycznej składu fazowego oraz naprężeń hartowniczych w elementach wykonanych ze stali narzędziowej do pracy na gorąco (W360).
Twórcy
autor
  • Czestochowa University of Technology, Institute of Computer and Information Sciences, The Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Computer and Information Sciences, The Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Computer and Information Sciences, The Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-200 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Computer and Information Sciences, The Faculty of Mechanical Engineering and Computer Science, 73 Dąbrowskiego Str., 42-200 Czestochowa, Poland
Bibliografia
  • [1] P. Carlone, G. S. Palazzo, Development and validation of a thermo-mechanical finite element model of the steel quenching process including solid-solid phase changes, International applied Mechanics 46(8), 955-971 (2011).
  • [2] B. Chen, X. H. Peng, S. N. Nong, X. C. Liang, An incremental constitutive relationship incorporating phase transformation with the application to stress analysis, Journal of Materials Processing Technology 122, 208-212 (2002).
  • [3] S. H. Kang, Y. T. Im, Three-dimensional thermo-elestic-plastic finite element modeling of quenching process of plain carbon steel in couple with phase transformation, International Journal of Mechanical Sciences 49(4), 423-439 (2007).
  • [4] E. P. Silva, P. M. C. L. Pacheco, M. A. Savi, On the thermomechanical coupling in austenite-martensite phase transformation related to the quenching process, International Journal of Solids and Structures 41, 1139-1155 (2004).
  • [5] R. Mahnken, A. Schneidt, S. Tschumak, H.J. Maier, On the simulation of austenite to bainite phase transformation, Computational Materials Science 50, 1823-1829 (2011).
  • [6] Warmarbeitsstahl Hot Work Tool Steel, BOHLER W360, Iso Bloc, www.bohler-edelstahl.com
  • [7] S. Serejzadeh, Modeling of temperature history and phase transformation during cooling of steel, Journal of Processing Technology 146, 311-317 (2004).
  • [8] Ch. Heming, H. Xieqing, W. Honggang, Calculation of the residual stress of a 45 steel cylinder with a non-linear surface heat-transfer coefficient including phase transformation during quenching, Journal of Materials Processing Technology 55, 339-343 (1999).
  • [9] J. B. Leblond, J. Devaux, A new kinetic model for an isothermal metallurgical transformation in steel including effect of austenite grain size, Acta Materialia 52, 137-146 (1984).
  • [10] A. Kulawik, A. Bokota, Modelling of heat treatment of steel with the movement of coolant Archives of Metallurgy and Materials, 56(2), 345-357 (2011).
  • [11] C-H. Lee, K-H. Chang, Prediction of residual stresses in high strength carbon steel pipe weld considering solid-state phase transformation effects, Computers and Structures 89 (2011), 256-265.
  • [12] M. Cherkaoui, M. Berveiller, H. Sabar, Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International Journal of Plasticity 14(7), 597-626 (1998).
  • [13] M. Coret, A. Combescure, A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels), International Journal of Mechanical Sciences 44, 1947-1963 (2002).
  • [14] F. Fischer, G. Reinsner, E. Werner, K. Tanaka, G. Cailletaud, T. Antretter, A new view on transformation induced plasticity (TRIP), International Journal of Plasticity 16, 723-748 (2000).
  • [15] L. Taleb, F. Sidoroff, A micromechanical modelling of the Greenwood-Johnson mechanism in transformation induced plasticity, International Journal of Plasticity 19, 1821-1842 (2003).
  • [16] R. B. Pęcherski, Finite deformation plasticity with strain induced anisotropy and shear banding, Journal of Materials Processing Technology 60, 35-44 (1996).
  • [17] C. H. Gür, A. E. Tekkaya, Numerical investigation of nonhomogeneous plastic deformation in quenching process, Materials Science and Engineering A 319-321, 164-169 (2001).
  • [18] M. Dalgic, G. Löwisch, Transformation plasticity at different phase transformation of bearing steel, Mat.-wiss. u. Werkstofftech 37(1), 122-127 (2006).
  • [19] L. Huiping, Z. Guoqun, N. Shanting, H. Chuanzhen, FEM simulation of quenching process and experimental verification of simulation results, Material Science and Engineering A 452-453, 705-714 (2007).
  • [20] D. Y. Ju, W. M. Zhang, Y. Zhang, Modeling and experimental verification of martensitic transformation plastic behavior in carbon steel for quenching process, Materials Science and Engineering A 438-440, 246-250 (2006).
  • [21] K. J. Lee, Characteristics of heat generation during transformation in carbon steel, Scripta Materialia 40, 735-742 (1999).
  • [22] O. C. Zienkiewicz, R. L. Taylor, The finite element method, Oxword: Butterworth-Heinemann, Fifth edition 1,2,3 (2000).
  • [23] M. Avrami, Kinetics of phase change, Journal of Chemical Physics, I(7), 1103 1112 (1939), II(8), 212-224 (1940), III(9), 117-184 (1941).
  • [24] D. P. Koistinen, R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica 7, 59 60 (1959).
  • [25] S. Caddemi, J. B. Martin, Convergence of the Newton-Raphson algorithm in elastic-plastic incremental analysis, Int. J. Numer. Meth. Eng. 31, 177-191 (1991).
  • [26] J. Jasiński, Influence of fluidized bed on diffusional processes of saturation of steel surface layer. Seria: Inżynieria Materiałowa Nr 6, Częstochowa (2003) (in Polish).
  • [27] H. Cheng, J. Xie, J. Li, Determination of surface heat-transfer coefficients of steel cylinder with phase transformation during gas quenching with high pressures, Computational Materials Science 29, 453-458 (2004).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b98e28b9-b3ae-43cd-ad57-f7d7e9b399ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.