PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single-Step Antimicrobial And Moisture Management Finishing Of Pc Fabric Using Zno Nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Functionalization of textile fabrics with metal oxide nanoparticles can be used to add antibacterial and moisture management properties to them. Current work focuses on the development of these properties on polyester/cotton woven fabrics by treating them with zinc oxide nanoparticles for workwear and sportswear applications. Zinc oxide nanoparticles, prepared by sol-gel method, were applied on fabric samples, which were then tested for antibacterial and moisture management properties using standard test methods AATCC 147 with Staphylococcus aureus and AATCC 195, respectively. It was found that application of ZnO nanoparticles improved both these properties with smaller particle imparting larger effects on both of them.
Rocznik
Strony
259--262
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Department of Textile Processing, National Textile University, Pakistan
autor
  • Department of Textile Processing, National Textile University, Pakistan
autor
  • Laboratoire de Physique et Mécanique Textiles, École Nationale Supérieure D’ingénieur Sud Alsace, University de Haute Alsace, France
autor
  • Department of Textile Processing, National Textile University, Pakistan
Bibliografia
  • [1] Siedenbiedel, F. and Tiller, J. C. (2012). Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers, 4(1), 46-71.
  • [2] Genzer, J. and Efimenko, K. (2006). Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling, 22(5), 339-360.
  • [3] Tiller, J. (2011). in Bioactive Surfaces. vol. 240, H. G. Börner and J.-F. Lutz, Eds., ed: Springer Berlin Heidelberg, 2011, 193-217.
  • [4] Lin, J., Qiu, S., Lewis, K., and Klibanov, A. M. (2003). Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnology and Bioengineering, 83(2), 168-172.
  • [5] Gao, Y. and Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78(1), 60-72.
  • [6] Dubas, S. T., Kumlangdudsana, P., and Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1), 105-109.
  • [7] Rajendra, R., Balakumar, C., Ahammed, H. A. M., Jayakumar, S., Vaideki, K., and Rajesh, E. (2010). Use of zinc oxide nano particles for production of antimicrobial textiles. International Journal of Engineering, Science and Technology, 2(1), 202-208.
  • [8] Perelshtein, I., Applerot, G., Perkas, N., Wehrschetz-Sigl, E., Hasmann, A., Guebitz, G., et al. (2008). Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS applied materials & interfaces, 1(2), 361-366.
  • [9] Montazer, M. and Seifollahzadeh, S. (2011). Enhanced Self‐cleaning, Antibacterial and UV Protection Properties of Nano TiO2 Treated Textile through Enzymatic Pretreatment. Photochemistry and photobiology, 87(4), 877-883.
  • [10] Simoncic, B. and Tomsic, B. (2010). Structures of novel antimicrobial agents for textiles-a review. Textile Research Journal, 80(16), 1721-1737.
  • [11] Manshahia, M. and Das A. (2014). Moisture management of high active sportswear. Fibers and Polymers, 15(6), 1221-1229.
  • [12] Manshahia, M. and Das, A (2014). High active sportswear-A critical review. Indian Journal of Fibre & Textile Research, 39(4), 441-449.
  • [13] Bakhtiari, M., Hasani, H., Zarrebini, M and Hassanzadeh, S. (2015), Investigation of the thermal comfort properties of knitted fabric produced from Estabragh (Milkweed)/ cotton-blended yarns. The Journal of The Textile Institute, 106(1), 47-56.
  • [14] Su, C.-I., Fang, J.-X., Chen, X.-H., and Wu, W.-Y. (2007). Moisture absorption and release of profiled polyester and cotton composite knitted fabrics. Textile Research Journal, 77(10), 764-769.
  • [15] Sharabaty, T., Biguenet, F., Dupuis, D., and Viallier, P. (2008). Investigation on moisture transport through polyester/cotton fabrics. Ind. J. Fib. Text. Res, 33, 419-425.
  • [16] Sanders, E.M. and Zeronian, S.H. (1982). An analysis of the moisture‐related properties of hydrolyzed polyester. Journal of Applied Polymer Science, 27(11), 4477-4491.
  • [17] Hussain, T. and Abid, A. (2012). Effect of caustic soda treatment on some comfort aspects of polyester/cotton workwear fabrics. INDUSTRIA TEXTILA, 63(4), 183-189.
  • [18] Holme, I. (2007). Innovative technologies for high performance textiles. Coloration Technology, 123(2), 59-73.
  • [19] Sarkar, M., Fan, J., and Qian, X. (2007). Transplanar water transport tester for fabrics. Measurement Science and Technology, 18(5), 1465.
  • [20] Grancarić, A., Ujević, D., Hussain, T., Ahsan, N., Blaženka, Š. B., and Botteri, L. (2012). in 14th Romanian Textiles and Leather Conference and 46th International Federation of Knitting Technologists Congress, Sinaia, Rumunjska.
  • [21] Wahab, R., Ansari, S.G., Kim, Y. S., Song, M., Shin, H.-S. (2009) The role of pH variation on the growth of zinc oxide nanostructures. Applied Surface Science,. 255(9), 4891-4896.
  • [22] De Yoreo, J. J. and Vekilov, P. G. (2003). Principles of Crystal Nucleation and Growth. Reviews in Mineralogy and Geochemistry, 54(1), 57-93.
  • [23] Demoisson, F., Piolet, R., Ariane, M., Leybros, A., and Bernard, F. (2014). Influence of the pH on the ZnO nanoparticle growth in supercritical water: Experimental and simulation approaches. The Journal of Supercritical Fluids, 95(0), 75-83.
  • [24] Zhou, Z., Zhao, Y., and Cai, Z. (2010). Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Applied Surface Science, 256(14), 4724-4728.
  • [25] Daneshvar, N., Salari, D., and Khataee, A. R. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 162(2-3), 317-322.
  • [26] Dingreville, R., Qu, J., and Mohammed, C. (2005). Surface free energy and its effect on the elastic behavior of nanosized particles, wires and films. Journal of the Mechanics and Physics of Solids, 53(8), 1827-1854.
  • [27] AATCC, T. (2009). 195: 2009. Liquid Moisture Management Properties of Textile Fabrics, American Association of Textile Chemists and Colourists.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b983c1e8-5f4d-425e-985e-7295593d9396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.