PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatio-temporal variations in sulfur-oxidizing and sulfate-reducing bacterial activities during upwelling, off south-west coast of India

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Arabian Sea, off SW India, is becoming more anoxic in recent years. Poor ventilation affects microbial degradation of organic matter in the oxygen minimum zone (≤ 2.85 ml l-1 O2, ≤ 0.02 μM NO2) and the anoxic marine zone (≤ 0.09 ml l-1 O2, ≥ 0.5 μM NO2). We posit that one of the reasons at the microbial level could be due to a more prominent increase in sulfate-reducing activity (SRA), than sulfur-oxidizing activity (SOA). Hence, the objective was to measure the extent to which SOA can counter the effect of SRA. We, therefore examined these activities along with relevant environmental variables from 2009 to 2011 off Kochi (9.55°N-75.33°E) and Trivandrum (8.26°N-76.50°E), covering the three phases of upwell-ing. SRA was measured radiometrically using 35S, and SOA by iodometry. Off Kochi, the SOA of the water column increased 6 x (194-1151 μM d-1) and SRA 4 x (13-54 nM d-1) from phase I to III. Off Trivandrum, the increase in SOA was 1.7 x (339-560 μM d-1) and SRA 7 x (24-165 nM d-1) contributing to the build-up of reducing/oxidizing conditions. This increase in SOA moderates the effect of increase in SRA. Besides, the average concentrations of dissolved oxygen and nitrite off Trivandrum were 1.80 ± 1.66, 1.48 ± 1.55, 1.93 ± 1.86 ml l-1 and 0.14 ± 0.14, 1.69 ± 0.67, 0.34 ± 0.42 μM during the three phases respectively. Hence, it is suggested that the coastal waters examined in this study could probably be between oxygen minimum zone (OMZ) and anoxic minimum zone (AMZ) in patches temporarily. The present paper highlights the interactions between sulfate-reducing and sulfur-oxidizing activities, during upwelling for the first time in these waters. These observations give an important and timely insight into the implications.
Czasopismo
Rocznik
Strony
427--444
Opis fizyczny
Bibliogr. 84 poz., mapa, tab., wykr.
Twórcy
  • CSIR-National Institute of Oceanography, Dona Paula, Goa, India
  • CSIR-National Institute of Oceanography, Dona Paula, Goa, India
  • International Max Planck Research School of Global Biogeochemical Cycles, Friedrich Schiller University, Jena, Germany
  • Academy of Climate Change, Education and Research, Agricultural University, Kerala, India
  • CSIR-National Institute of Oceanography, Dona Paula, Goa, India
Bibliografia
  • [1] Albert, D. B., Taylor, C., Martens, C. S., 1995. Sulfate reduction rates and low molecular weight fatty acid concentrations in the water column and surficial sediments of the Black Sea. Deep Sea Res. Pt. I 42 (7), 1239-1260, http://dx.doi.org/10.1016/0967-0637(95)00042-5.
  • [2] Aldunate, M., De la Iglesia, R., Bertagnolli, A. D., Ulloa, O., 2018. Oxygen modulates bacterial community composition in the coastal upwelling waters off central Chile. Deep Sea Res. Pt. II 156, 68-79, http://dx.doi.org/10.1016/j.dsr2.2018.02.001.
  • [3] Alsenz, H., Illner, P., Ashckenazi-Polivoda, S., Meilijson, A., Abramovich, S., Feinstein, S., Almogi-Labin, A., Berner, Z., Püttmann, W., 2015. Geochemical evidence for the link between sulfate reduction, sulfide oxidation and phosphate accumulation in a Late Cretaceous upwelling system. Geochem. Trans. 16, 1-13, http://dx.doi.org/10.1186/s12932-015-0017-1.
  • [4] Aluwihare, L. I., Repeta, D. J., Chen, R. F., 1997. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387, 166-169, http://dx.doi.org/10.1038/387166a0.
  • [5] Arning, E. T., Birgel, D., Schulz-Vogt, H. N., Holmkvist, L., Jørgensen, B. B., Larson, A., Peckmann, J., 2008. Lipid biomarker patterns of phosphogenic sediments from upwelling regions. Geomicrobiol. J. 25, 69-82, http://dx.doi.org/10.1080/01490450801934854.
  • [6] Banse, K., Naqvi, S. W. A., Narvekar, P. V., Postel, J. R., Jayakumar, D. A., 2014. Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal time scales. Biogeosci. Discuss. 11 (8), 2237, http://dx.doi.org/10.5194/bg-11-2237-2014.
  • [7] Banse, K., Naqvi, S. W. A., Postel, J. R., 2017. A zona incognita surrounds the secondary nitrite maximum in open-ocean oxygen minimum zones. Deep Sea Res. Pt. I 127, 111-113, http://dx.doi.org/10.1016/j.dsr.2017.07.004.
  • [8] Bottrell, S. H., Smart, P. L., Whitaker, F., Raiswell, R., 1991. Geochemistry and isotope systematics of sulfur in the mixing zone of Bahamian blue holes. Appl. Geochem. 6 (1), 97-103, http://dx.doi.org/10.1016/0883-2927(91)90066-x.
  • [9] Brioukhanov, A. L., Pieulle, L., Dolla, A., 2010. Antioxidative defense systems of anaerobic sulfate reducing microorganisms. In: Mendez Vilas, A. (Ed.), Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Microbiology Book Series, volume 1. Formatex Research Center, Badajoz, Spain, 148-159.
  • [10] Canfield, D. E., 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65 (7), 1117-1124, http://dx.doi.org/10.1016/s0016-7037(00)00584-6.
  • [11] Canfield, D. E., Kristensen, E., Thamdrup, B., 2005. Aquatic geomicrobiology. Adv. Mar. Biol. 48, 1-599, http://dx.doi.org/10.1016/s0065-2881(05)48015-3.
  • [12] Canfield, D. E., Stewart, F. J., Thamdrup, B., Brabandere, L. D., Dalsgaard, T., Delong, E. F., Revsbech, N. P., Ulloa, O., 2010. A cryptic sulfur cycle in oxygen-minimum zone waters off the Chilean Coast. Science 330, 1375-1378, http://dx.doi.org/10.1126/science.1196889.
  • [13] Capone, D. G., Hutchins, D. A., 2013. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 6, 711-717, http://dx.doi.org/10.1038/ngeo1916.
  • [14] Colin, Y., Goñi-Urriza, M., Gassie, C., Carlier, E., Monperrus, M., Guyoneaud, R., 2017. Distribution of sulfate-reducing communities from estuarine to Marine Bay Waters. Microb. Ecol. 73, 39-49, http://dx.doi.org/10.1007/s00248-016-0842-5.
  • [15] Crowe, S. A., Cox, R. P., Jones, C., Fowle, D. A., Santibañez-Bustos, J. F., Ulloa, O., Canfield, D. E., 2018. Decrypting the sulfur cycle in oceanic oxygen minimum zones. ISME J. 12, 2322-2329, http://dx.doi.org/10.1038/s41396-018-0149-2.
  • [16] Cypionka, H., 2000. Oxygen respiration by desulfovibrio species. Annu. Rev. Microbiol. 54, 827-848, http://dx.doi.org/10.1146/annurev.micro.54.1.827.
  • [17] De Souza, M. J., LokaBharathi, P. A., Shanta, N., Chandramohan, D., 2007. “Trade-off” in Antarctic bacteria: limnetic psychrotrophs concede multiple enzyme expressions for multiple metal resistance. Biometals 20 (6), 821-828, http://dx.doi.org/10.1007/s10534-006-9045-8.
  • [18] Dolla, A., Fournier, M., Dermoun, Z., 2006. Oxygen defense in sulfate reducing bacteria. J. Biotechnol. 126, 87-100, http://dx.doi.org/10.1016/j.jbiotec.2006.03.041.
  • [19] Ducklow, H. W., Smith, D. C., Campbell, L., Landry, M. R., Quinby, H. L., Steward, G. F., Azam, F., 2001. Heterotrophic bacterioplankton in the Arabian Sea: basinwide response to year-round high primary productivity. Deep Sea Res. Pt. II 48 (6-7), 1303-1323, http://dx.doi.org/10.1016/s0967-0645(00)00140-5.
  • [20] Fortin, D., Rioux, J. P., Roy, M., 2002. Geochemistry of iron and sulfur in the zone of microbial sulfate reduction in mine tailings. Water Air Soil Poll. 2 (3), 37-56, http://dx.doi.org/10.1023/a:1019983024680.
  • [21] Fossing, H., Gallardo, V. A., Jørgensen, B. B., Hüttel, M., Nielsen, L. P., Schulz, H., Canfield, D. E., Forster, S., Glud, R. N., Gundersen, J. K., Küver, J., Ramsing, N. B., Teske, A., Thamdrup, B., Ulloa, O., 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374, 713-715, http://dx.doi.org/10.1038/374713a0.
  • [22] Gerson, V. J., Madhu, N., Jyothibabu, R., Balachandran, K., Nair, M., Revichandran, C., 2014. Oscillating environmental responses of the eastern Arabian Sea. Indian J. Geo-Mar. Sci. 43, 67-75.
  • [23] Gibson, G. R., 1990. Physiology and ecology of the sulphate-reducing bacteria. J. Appl. Microbiol. 69, 769-797, http://dx.doi.org/10.1111/j.1365-2672.1990.tb01575.x.
  • [24] Glaubitz, S., Kießlich, K., Meeske, C., Labrenz, M., Jürgens, K., 2013. SUP05 dominates the gamma proteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the Central Baltic and Black Seas. J. Appl. Microbiol. 79 (8), 2767-2776, http://dx.doi.org/10.1111/j.1365-2672.1990.tb01575.x.
  • [25] Goes, J. I., Thoppil, P. G., Gomes, H., Fasullo, J. T., 2005. Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 308 (5721), 545-547, http://dx.doi.org/10.1126/science.1106610.
  • [26] Goldhammer, T., Brüchert, V., Ferdelman, T. G., Zabel, M., 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci. 3 (8), 557-561, http://dx.doi.org/10.1038/ngeo913.
  • [27] Gonsalves, M. J., Paropkari, A. L., Fernandes, C. E. G., LokaBharathi, P. A., Krishnakumari, L., Fernando, V., Nampoothiri, G. E., 2011. Predominance of anaerobic bacterial community over aerobic community contribute to intensify 'oxygen minimum zone' in the eastern Arabian Sea. Cont. Shelf Res. 31, 1224-1235, http://dx.doi.org/10.1016/j.csr.2011.04.011.
  • [28] Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim, 125 pp.
  • [29] Hansen, N. W., 1973. Official Standardized and Recommended Methods of Analysis. The Society of Analytical Chemistry, London, 897 pp.
  • [30] Hobbie, J. E., Daley, R. J., Jasper, S., 1977. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1226.
  • [31] Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., Billen, G., 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ. 9 (1), 18-26, http://dx.doi.org/10.1890/100008.
  • [32] Jannasch, H. W., Wirsen, C. O., Molyneaux, S. J., 1991. Chemoautotrophic sulfur-oxidizing bacteria from the Black Sea. Deep Sea Res. Pt. I 38 (2), S1105-S1120, http://dx.doi.org/10.1016/S0198-0149(10)80026-3.
  • [33] Jørgensen, B. B., Boetius, A., 2007. Feast and famine-microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5 (10), 770-781, http://dx.doi.org/10.1038/nrmicro1745.
  • [34] Jørgensen, B. B., Fossing, H., Wirscn, C. O., Jannasch, H. W., 1991. Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res. 38 (2), S1083-S1103, http://dx.doi.org/10.1016/s0198-0149(10)80025-1.
  • [35] Jørgensen, B. B., Gallardo, V. A., 1999. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28 (4), 301-313, http://dx.doi.org/10.1016/s0168-6496(98)00122-6.
  • [36] Jørgensen, B. B., Parkes, R. J., 2010. Role of sulfate reduction and methane for anaerobic carbon cycling in eutrophic fjord sediments (Limfjorden, Denmark). Limnol. Oceanogr. 55, 1338-1352, http://dx.doi.org/10.4319/lo.2010.55.3.1338.
  • [37] Karnachuk, O. V., Pimenov, N. V., Iusupov, S. K., Frank, I., Puhakka, J. A., Ivanov, M. V., 2006. Distribution, diversity, and activity of sulfate-reducing bacteria in the water column in Gek-Gel Lake, Azerbaijan. Microbiology 75 (1), 82-89, http://dx.doi.org/10.1134/s0026261706010152.
  • [38] King, G. M., 2001. Radiotracer assays (35S) of sulfate reduction rates in marine and freshwater sediments. Method. Microbiol. 30, 489-500, http://dx.doi.org/10.1016/s0580-9517(01)30059-4.
  • [39] Kogure, K. U., Simidu Taga, N., 1984. An improved direct viable count method for aquatic bacteria. Archives of Hydrobiol 102, 117-122.
  • [40] Krishnan, K. P., Fernandes, S., LokaBharathi, P. A., Krishna Kumari, L., Shanta, N., Pratihari, A. K., Rao, B. R., 2008. Anoxia over the western continental shelf of India: bacterial indications of intrinsic nitrification feeding denitrification. Marine Environ. Res. 65 (5), 445-455, http://dx.doi.org/10.1016/j.marenvres.2008.02.003.
  • [41] Kumar, S. P., Ramaiah, N., Gauns, M., Sarma, V. V. S. S., Muraleedharan, P. M., Raghukumar, S., Kumar, M. D., Madhupratap, M., 2001. Physical forcing of biological productivity in the Northern Arabian Sea during the Northeast Monsoon. Deep Sea Res. Pt. II 48 (6), 1115-1126, http://dx.doi.org/10.1016/S0967-0645(00)00133-8.
  • [42] Lachkar, Z., Lévy, M., Smith, S., 2018. Intensification and deepening of the Arabian Sea Oxygen Minimum Zone in response to increase in Indian monsoon wind intensity. Biogeosciences 15 (1), 159-186, http://dx.doi.org/10.5194/bg-15-159-2018.
  • [43] Lavik, G., Stuhrmann, T., Brüchert, V., Van der Plas, A., Mohrholz, V., Lam, P., Mussmann, M., Fuchs, B. M., Amann, R., Lass, U., Kuypers, M. M., 2009. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457, 581-586, http://dx.doi.org/10.1038/nature07588.
  • [44] LokaBharathi, P. A., 1989. The occurrence of denitrifying colourless sulfur-oxidizing bacteria in marine waters and sediments as shown by the agar shake technique. FEMS Microbiol. Ecol. 62, 335-342, http://dx.doi.org/10.1111/j.1574-6968.1989.tb03388.x.
  • [45] LokaBharathi, P. A., Chandramohan, D., 1990. Sulfate-reducing bacteria from the Arabian Sea — their distribution in relation to thiosulfate-oxidizing and heterotrophic bacteria. Bull. Mar. Sci. 47, 622-630.
  • [46] LokaBharathi, P. A., Chandramohan, D., Nair, S., 1988. A preliminary study of anaerobic thiosulfate-oxidizing bacteria as denitrifiers in the Arabian Sea. Geomicrobiol. J. 6, 195-207, http://dx.doi.org/10.1080/01490458809377839.
  • [47] LokaBharathi, P. A., Nair, S., Chandramohan, D., 1997. Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria. J. Mar. Biotechnol. 5, 172-177.
  • [48] Madhupratap, M., Gauns, M., Ramaiah, N., Kumar, S. P., Muraleedharan, P. M., De Sousa, S. N., Sardessai, S., Muraleedharan, U., 2003. Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep Sea Res. Pt. II 50 (5), 881-896, http://dx.doi.org/10.1016/s0967-0645(02)00611-2.
  • [49] Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K. K. C., Ramaiah, N., 1996. Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature 384, 549-552, http://dx.doi.org/10.1038/384549a0.
  • [50] Malik, A., Fernandes, C. E. G., Gonsalves, M. J. B. D., Subina, N. S., Mamatha, S. S., Krishna, K., Varik, S., Kumari, R., Gauns, M., Cejoice, R. P., Pandey, S. S., Jineesh, V. K., Kamaleson, A. S., Vijayan, V., Mukherjee, I., Subramanyan, S., Nair, S., Ingole, B., LokaBharathi, P. A., 2015. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon. J. Sea Res. 95, 56-69, http://dx.doi.org/10.1016/j.seares.2014.10.012.
  • [51] Meier, J., Piva, A., Fortin, D., 2012. Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes. FEMS Microbiol. Ecol. 79 (1), 69-84, http://dx.doi.org/10.1111/j.1574-6941.2011.01199.x.
  • [52] Middelburg, J. J., Levin, L. A., 2009. Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6, 1273-1293, http://dx.doi.org/10.5194/bg-6-1273-2009.
  • [53] Naqvi, S. W. A., 1991. Geographical extent of denitrification in the Arabian Sea in relation to some physical processes. Oceanologica Acta 14 (3), 281-290. https://archimer.ifremer.fr/doc/00101/21257.
  • [54] Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., Zhang, J., 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7, 2159-2190, http://dx.doi.org/10.5194/bg-7-2159-2010.
  • [55] Nelson, D. C., Amend, J. P., Edwards, K. J., Lyons, T. W., 2004. Sulfide oxidation in marine sediments: geochemistry meets microbiology. Sulfur Biogeochem. 379, 63-81, http://dx.doi.org/10.1130/0-8137-2379-5.63.
  • [56] Neretin, L. N., Abed, R. M., Schippers, A., Schubert, C. J., Kohls, K., Kuypers, M. M., 2007. Inorganic carbon fixation by sulfate-reducing bacteria in the Black Sea water column. Environ. Microbiol. 9 (12), 3019-3024, http://dx.doi.org/10.1111/j.1462-2920.2007.01413.x.
  • [57] Pimenov, N. V., Neretin, L. N., 2006. Compositions and activities of microbial communities involved in carbon, sulfur, nitrogen and manganese cycling in the oxic/anoxic interface of the Black Sea. In: Neretin, L. N. (Ed.), Past and Present Water Column Anoxia. Springer, Dordrecht, 501-521, http://dx.doi.org/10.1007/1-4020-4297-3_19.
  • [58] Queste, B. Y., Vic, C., Heywood, K. J., Piontkovski, S. A., 2018. Physical controls on oxygen distribution and denitrification potential in the north west Arabian Sea. Geophys. Res. Lett. 45 (9), 4143-4152, http://dx.doi.org/10.1029/2017GL076666.
  • [59] Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., Kumar, D., 2012. Controlling factors of the oxygen balance in the Arabian Sea's OMZ. Biogeosciences 9 (12), 5095-5109, http://dx.doi.org/10.5194/bgd-9-5509-2012.
  • [60] Sass, A. M., Eschemann, A., Kühl, M., Thar, R., Sass, H., Cypionka, H., 2002. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. Microbiol. Ecol. 40 (1), 47-54, http://dx.doi.org/10.1111/j.1574-6941.2002.tb00935.x.
  • [61] Schink, B., Friedrich, M., 2000. Bacterial metabolism: phosphite oxidation by sulphate reduction. Nature 406 (6791), 37, http://dx.doi.org/10.1038/35017644.
  • [62] Schutte, C. A., Wilson, A. M., Evans, T., Moore, W. S., Joye, S. B., 2018. Deep oxygen penetration drives nitrification in intertidal beach sands. Limnol. Oceanogr. 63 (S1), S193-S208, http://dx.doi.org/10.1002/lno.10731.
  • [63] Shanks, A. L., Reeder, M. L., 1993. Reducing microzones and sulfide production in marine snow. Mar. Ecol. Prog. Ser. 96, 43-47, http://dx.doi.org/10.3354/meps096043.
  • [64] Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C., Sundar, D., Michael, G. S., Almeida, A. M., Santanam, K., 1990. Hydrography and circulation off the west coast of India during the southwest monsoon 1987. J. Mar. Res. 48, 359-378, http://dx.doi.org/10.1357/002224090784988809.
  • [65] Shetye, S. S., Mohan, R., Patil, S., Jena, B., Chacko, R., George, J. V., Noronha, S., Singh, N., Priya, L., Sudhakar, M., 2015. Oceanic pCO2 in the Indian sector of the Southern Ocean during the austral summer-winter transition phase. Deep Sea Res. Pt. II 118, 250-260, http://dx.doi.org/10.1016/j.dsr2.2015.05.017.
  • [66] Sievert, S. M., Wierings, E. B. A., Wirsen, C. O., Taylor, C. D., 2007. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ. Microbiol. 9, 271-276, http://dx.doi.org/10.1111/j.1462-2920.2006.01156.x.
  • [67] Simu, K., Holmfeldt, K., Zweifel, U. L., Hagström, A., 2005. Culturability and coexistence of colony-forming and single-cell marine bacterioplankton. Appl. Environ. Microbiol. 71, 4793-4800, http://dx.doi.org/10.1128/aem.71.8.4793-4800.2005.
  • [68] Sokolova, E. A., 2010. Influence of temperature on development of sulfate-reducing bacteria in the laboratory and field in winter. Contemp. Probl. Ecol. 3 (6), 631-634, http://dx.doi.org/10.1134/s1995425510060032.
  • [69] Sorokin, D. Y., Tourova, T. P., Lysenko, A. M., Muyzer, G., 2006. Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152, 3013-3023, http://dx.doi.org/10.1099/mic.0.29106-0.
  • [70] Strickland, J. D. H., Parsons, T. R., 1977. A Practical Handbook of Seawater Analysis, 2nd ed. Fisheries Research Board of Canada, Ottawa, 21 pp., http://publications.gc.ca/pub?id=9.581564&sl=0.
  • [71] Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., Reinthaler, T., Poulton, N. J., Masland, E. D., Gomez, M. L., Sieracki, M. E., DeLong, E. F., Herndl, G. J., Stepanauskas, R., 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333 (6047), 1296-1300, http://dx.doi.org/10.1126/science.1203690.
  • [72] Teske, A., Ramsing, N. B., Habicht, K., Fukui, M., Küver, J., Jørgensen, B. B., Cohen, Y., 1998. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl. Environ. Microbiol. 64 (8), 2943-2951, PMID: 9687455.
  • [73] Teske, A., Wawer, C., Muyzer, G., Ramsing, N. B., 1996. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62 (4), 1405-1415, PMID: 8919802.
  • [74] Thomas, L. C., Padmakumar, K. B., Smitha, B. R., Asha Devi, C. R., Bijoy Nandan, S., Sanjeevan, V. N., 2013. Spatio-temporal variation of microphytoplankton in the upwelling system of the south-eastern Arabian Sea during the summer monsoon of 2009. Oceanologia 55 (1), 185-204, http://dx.doi.org/10.5697/oc.55-1.185.
  • [75] Tuttle, J. H., Jannasch, H. W., 1976. Microbial utilization of thiosulfate in the deep sea. Limnol. Oceanogr. 21 (5), 697-701, http://dx.doi.org/10.4319/lo.1976.21.5.0697.
  • [76] Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M., Stewart, F. J., 2012. Microbial oceanography of anoxic oxygen minimum zones. PNAS 109 (40), 15996-16003, http://dx.doi.org/10.1073/pnas.1205009109.
  • [77] Visscher, P. T., Prins, R. A., Gemerden, H., 1992. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol. Ecol. 9 (4), 283-294, http://dx.doi.org/10.1111/j.1574-6941.1992.tb01763.x.
  • [78] Walsh, D. A., Zaikova, E., Howes, C. G., Song, Y. C., Wright, J. J., Tringe, S. G., Tortell, P. D., Hallam, S. J., 2009. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326, 578-582, http://dx.doi.org/10.1126/science.1175309.
  • [79] Walsh, J. J., Dieterle, D. A., Müller-Karger, F. E., Bohrer, R., Bissett, W. P., Varela, R. J., Aparicio, R., Díaz, R., Thunell, R., Taylor, G. T., Scranton, M. I., Fanning, K. A., Peltzer, E. T., 1999. Simulation of carbon/nitrogen cycling during spring upwelling in the Cariaco Basin. J. Geophys. Res. 104, 7807-7825, http://dx.doi.org/10.1029/1998jc900120.
  • [80] Wiggert, J. D., Murtugudde, R. G., McClain, C. R., 2002. Processes controlling interannual variations in wintertime (Northeast Monsoon) primary productivity in the central Arabian Sea. Deep Sea Res. Pt. II: Top. Stud. Oceanogr. 49 (12), 2319-2343, http://dx.doi.org/10.1016/s0967-0645(02)00039-5.
  • [81] Winch, S., Mills, H. J., Kostka, J. E., Fortin, D., Lean, D. R. S., 2009. Identification of sulfate-reducing bacteria in methylmercury-contaminated mine tailings by analysis of SSU rRNA genes. FEMS Microbiol. Ecol. 68 (1), 94-107, http://dx.doi.org/10.1111/j.1574-6941.2009.00658.x.
  • [82] Wu, J., Liu, H., Wang, P., Zhang, D., Sun, Y., Li, E., 2017. Oxygen reduction reaction affected by sulfate-reducing bacteria: different roles of bacterial cells and metabolites. Indian J. Microbiol. 57 (3), 344-350, http://dx.doi.org/10.1007/s1208.
  • [83] Wurl, O., 2009. Practical Guidelines for the Analysis of Seawater. CRC Press, Ottawa, 408 pp.
  • [84] Yentsch, C. D., Menzel, D. W., 1963. A method for determination of chlorophyll and phaeophytin by fluorescence. Deep Sea Res. 10, 221-231, http://dx.doi.org/10.1016/0011-7471(63)90358-9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b982f30c-95d9-4cff-a635-aea5ef375aa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.