PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Laser-plasma extreme ultraviolet and soft X-ray sources based on a double stream gas puff target : interaction of the radiation pulses with matter

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work a review of investigations concerning interaction of intense extreme ultraviolet (EUV) and soft X-ray (SXR) pulses with matter is presented. The investigations were performed using laser-produced plasma (LPP) EUV/SXR sources based on a double stream gas puff target. The sources are equipped with dedicated collectors allowing for efficient focusing of the EUV/SXR radiation pulses. Intense radiation in a wide spectral range, as well as a quasi-monochromatic radiation can be produced. In the paper different kinds of LPP EUV/SXR sources developed in the Institute of Optoelectronics, Military University of Technology are described. Radiation intensities delivered by the sources are sufficient for different kinds of interaction experiments including EUV/SXR induced ablation, surface treatment, EUV fluorescence or photoionized plasma creation. A brief review of the main results concerning this kind of experiments performed by author of the paper are presented. However, since the LPP sources cannot compete with large scale X-ray sources like synchrotrons, free electron lasers or high energy density plasma sources, it was indicated that some investigations not requiring extreme irradiation parameters can be performed using the small scale installations. Some results, especially concerning low temperature photoionized plasmas are very unique and could be hardly obtained using the large facilities.
Twórcy
autor
  • Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • 1. O.A. Hurricane, D.A. Callahan, D.T. Casey, P.M. Celliers, C. Cerjan, E.L. Dewald, T.R. Dittrich, T. Doppner, D.E. Hinkel, L.F. Berzak Hopkins, J.L. Kline, S. Le Pape, T. Ma, A.G. MacPhee, J.L. Milovich, A. Pak, H.-S. Park, P.K. Patel, B.A. Remington, J.D. Salmonson, P.T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion”, Nature 506, 343-348 (2014).
  • 2. J.E. Bailey, D. Cohen, G. Chandler, M. Cuneo, M. Foord, R. Heeter, D. Jobe, P. Lake, D. Liedahl, J. MacFarlane, T. Nash, D. Nielson, R. Smelser, and W. Stygar, “Neon photoionization experiments driven by Z-pinch radiation”, J. Quant. Spectrosc. Radiat. Transf. 71, 157 (2001).
  • 3. D.H. Cohen, J J . MacFarlane, J.E. Bailey, and D.A. Liedahl, “X-ray spectral diagnostics of neon photoionization experiments on the Z-machine,” Rev. Sci. Instrum. 74, 1962 (2003).
  • 4. S. Fujioka, H. Takabe, N. Yamamoto, D. Salzmann, F. Wang, H. Nishimura, Y. Li, Q. Dong, S. Wang, Y. Zhang, Y. Rhee, Y. Lee, J. Han, M. Tanabe, T. Fujiwara, Y. Nakabayashi, G. Zhao, J. Zhang, and K. Mima, “X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion”. Nature Phys. 5, 821-825 (2009).
  • 5. H.G. Wei, J.R. Shi. G. Zhao, Y. Zhang, Q.L. Dong, Y.T. Li, S.J. Wang, J. Zhang, Z.T. Liang, J.Y. Zhang, T.S. Wen. W.H. Zhang, X. Hu, S.Y. Liu, Y.K. Ding, L. Zhang, Y.J. Tang, B.H. Zhang, Z.J. Zheng, H. Nishimura, S. Fujioka, F.L. Wang, and H. Takabe, “Opacity studies of silicon in radiatively heated plasmas”, Astrophys. J. 683, 577-583 (2008).
  • 6. B.A.M. Hansson, O. Hemberg, H.M. Hertz, M. Berglund, H.-J. Choi, B. Jacobsson, E. Janin, S. Mosesson, L. Rymell, J. Thoresen, and M. Wilner, “Characterization of a liquid-xenon-jet laser-plasma extreme-ultraviolet source”, Rev. Sci. Instrum. 75, 2122-2129 (2004).
  • 7. D.W. Myers, l.V. Fomenkov, B.A.M. Hansson, B.C. Klene, and D.C. Brandt, “EUV source system development update: advancing along the path to HVM”, Proc. SPIE 5751, 248-259 (2005).
  • 8. J. Jonkers, “High power extreme ultra-violet (EUV) light sources for future lithography”, Plasma Sources Sci. Technol. 15, S8-S16 (2006).
  • 9. P.A.C. Jansson, B.A.M. Hansson. O. Hemberg, M. Otendal, A. Holmberg, J. de Groot, and H.M. Hertz, “Liquid-tin-jet laser-plasma extreme ultraviolet generation”, Appl. Phys. Lett. 84, 2256-2258 (2004).
  • 10. T. Makimura, S. Mitani, Y. Kenmotsu, K. Murakami, M. Mori, and K. Kondo, “Quartz micromachining using laser plasma soft x rays and ultraviolet laser light”, Appl. Phys. Lett. 85. 1274 (2004).
  • 11. S. Kranzusch, K. Mann, “Spectral characterization of EUV radiation emitted from a laser-irradiated gas puff target”, Opt. Commun. 200, 223-230 (2001).
  • 12. A. Bartnik. H. Fiedorowicz, R. Jarocki, J. Kostecki, M. Szczurek, and P.W.Wachulak, „Laser-plasma EUV source dedicated lor surface processing of polymers,” Nucl. Instrum. Meth. Phys. Res. A647. 125-131 (2011).
  • 13. A. Bartnik, P. Wachulak, H. Fiedorowicz, T. Fok, R. Jarocki, and M. Szczurek, “Extreme ultraviolet-induced photoionized plasmas”, Phys. Ser. T161, 014061 (2014).
  • 14. A. Bartnik, H. Fiedorowicz, R. Rakowski, M. Szczurek, F. Bijkerk, R. Bruijn, and H. Fledderus, “Soft X-ray emission from a double stream gas puff target irradiated by a nanosecond laser pulse”, Proc. SPIE 4424, 406-409 (2001).
  • 15. H. Fiedorowicz, A. Bartnik, H. Daido, II Woo Choi, M. Suzuki, and S. Yamagami, “Strong extreme ultraviolet emission from a double-stream xenon/helium gas puff target irradiated with a Nd:YAG laser”, Opt. Commun. 184, 161-167 (2000).
  • 16. P. Wachulak, A. Bartnik, and H. Fiedorowicz, “Sub-70 nm resolution table-top microscopy at 13.8 nm using a compact laser-plasma EUV source”, Opt. Lett. 35,2337-2339 (2010).
  • 17. P.W. Wachulak, A. Bartnik, H. Fiedorowicz, and J. Kostecki, “A 50 nm spatial resolution EUV imaging-resolution dependence on object thickness and illumination bandwidth”, Opt. Express 19. 9541-9550 (2011).
  • 18. P.W. Wachulak, A. Bartnik, H. Fiedorowicz, D. Panek, and P. Bruza, “Imaging of nanostructures with sub-100 nm spatial resolution using a desktop EUV microscope”, Appl. Phys. B109, 105-111 (2012).
  • 19. A. Bartnik, H. Fiedorowicz, R. Jarocki. J. Kostecki, R. Rakowski, M. Sawicka, and M. Szczurek, “Laser plasma sources of soft X-rays and extreme ultraviolet (EUV) for technology, biomedical and metrology applications”, Proc. SPIE 7141,714105 (2008).
  • 20. Y. Zhang, T. Katoh, M. Washio, H. Yamada, and S. Hamada. “High aspect ratio micromachining Teflon by direct exposure to synchrotron radiation”, Appl. Phys. Lett. 67, 872 (1995).
  • 21. T. Katoh, D. Yamaguchi, Y. Satoh, S. Ikeda, Y. Aoki, M. Washio, and Y. Tabata, “Microfabrication of crosslinked polytetrafluoroethylene using synchrotron radiation direct photo-etching”, Appl. Surf. Sci. 186, 24-28 (2002).
  • 22. T. Katoh, N. Nishi, M. Fukagawa, H. Ueno, and S. Sugiyama, “Direct writing for three-dimensional microfabrication using synchrotron radiation etching”, Sensor Actuat. A89. 10-15 (2001).
  • 23. A. Bartnik. H. Fiedorowicz, R. Jarocki, L. Juha, J. Kostecki, R. Rakowski, and M. Szczurek, “Micromachining of organic polymers by X-ray photo-etching using a 10 Hz laser-plasma radiation source, Microelectronic Engineering” 78-79, 452-456 (2005).
  • 24. A. Bartnik. H. Fiedorowicz, R. Jarocki, L. Juha, J. Kostecki, R. Rakowski, and M. Szczurek, “Strong temperature effect on X-ray photo-etching of polytetrafluoroethylene using a 10 Hz laser-plasma radiation source based on a gas puff target”, Appl. Phys. B82, 529-532 (2006).
  • 25. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, R. Rakowski, A. Szczurek. M. Szczurek, „Micro- and nanoprocessing of polymers using a laser plasma extreme ultraviolet source” Acta Physica Polonica A, 117, 384-390 (2010).
  • 26. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki. M. Szczurek, A. Szczurek, and P. Wachulak, “EUV: induced ablation and surface modifications of solids”, Proc. SPIE 8077 (2011).
  • 27. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, M. Szczurek, and P.W. Wachulak, “Efficient micromachining of poly(vinylidene fluoride) using a laser-plasma EUV source”, Appl. Phys. A 106, 551-555 (2012).
  • 28. F. Barkusky, A. Bayer, Ch. Pelh, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source”, J. Appl. Phys. 105, 014906 (2009).
  • 29. S. Torii. T. Makimura, K. Okazaki, D. Nakamura, A. Takahashi. T. Okada, H. Niino, and K. Murakami, “Micromachining of polymethylmethacrylate and polydimethylsiloxane using laser plasma soft X-rays”, J. Laser Micro/Nanoengineering 6 , 235 (2011).
  • 30. L. Juha, M. Bittner, D. Chvostova, J. Krasa, Z. Otcenasek, A.R. Priig, J. Ullschmied, Z. Pientka, J. Krzywinski, J.B. Pelka, A. Wawro, M.E. Grisham, G. Vaschenko, C.S. Menoni, and J.J. Roeca, “Ablation of organic polymers by 46.9-nm-laser radiation”, Appl. Phys. Lett. 86, 034109 (2005).
  • 31. L. Torrisi, G. Ciavola, R. Percolla, and F. Benyaich, “KeV-MeV ion irradiation of polyvinylidene fluoride (PVDF) films”, Nucl. Instrum. Methods Phys. Res. B116, 473-477 (1996).
  • 32. L. Torrisi and R. Percolla, “Ion beam processing of polyvinylidene fluoride”, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 117, 387-391 (1996).
  • 33. H.M. Manohara, E. Morikawa, J. Choi, and P.T. Sprunger, “Transfer by direct photo etching of poly(vinylidene flouride) using X-rays”, IEEE/ASME J. Microelectromech. Syst. 8 , 417-422 (1999).
  • 34. E. Morikawa, J. Choi, and H.M. Manohara, “Photoemission study of direct photomicromachining in poly(vinylidene fluoride)”, J. Appl. Phys. 87, 4010-4016 (2000).
  • 35. Y. Ji and Y. Jiang, “Increasing the electrical conductivity of poly(vinylidene fluoride) by KrF excimer laser irradiation”, Appl. Phys. Lett. 89, 221103 (2006).
  • 36. Y. Liu and Y. Jiang, “Rapid fabrication of patterned high-performance conductor poly(vinylidene fluoride) surfaces using a 248nm excimer laser”, Opt. Express 18, 22041 (2010).
  • 37. L. Bacakova, V. Mares, V. Lisa, and V. Svorcik, “Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions”. Biomaterials 21, 1173-1179 (2000).
  • 38. M. Collaud Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments”, Appl. Surf. Sci. 207, 276-286 (2003).
  • 39. T. Lippert, “Laser Application of Polymers”, Adv. Polym. Sci. 168, 51-246 (2004).
  • 40. T. Gumpenberger, J. Heitz, D. Bauerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, and F. Leisch, “Adhesion and proliferation of human endothelial cells on photoehemieally modified polytetrafluoroethylene”, Biomaterials 24, 5139-5144 (2003).
  • 41. R. Mikulikova, S. Moritz, T. Gumpenberger, M. Olbrich, C. Romanin, L. Bacakova, V. Svorcik, and J. Heitz, “Cell microarrays on photoehemieally modified polytetrafluoroethylene”, Biomaterials 26, 5572-5580 (2005).
  • 42. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A. Szczurek, and M. Szczurek, “Ablation and surface modifications of PMMA using a laser-plasma EUV source”, Appl. Phys. B96, 727-730 (2009).
  • 43. A. Bartnik, H. Fiedorowicz, R.Jarocki, J. Kostecki, M. Szczurek, A. Biliński, O. Chemyayeva, and J.W. Sobczak, “Physical and chemical modifications of PET surface using a laser-plasma EUV source”, Appl. Phys. A99, 831 (2010).
  • 44. A. Bartnik, H. Fiedorowicz. R. Jarocki, J. Kostecki, M. Szczurek, O. Chemyayeva, and J.W. Sobczak, “EUV-induced physic-chemical changes in near-surface layers of polymers” , J. Electron Spectrosc. Relat. Phenom. 184, 270-275 (2011).
  • 45. A. Bartnik, H. Fiedorowicz, R.Jarocki, J. Kostecki, and M. Szczurek, “PMMA and FEP surface modifications induced with EUV pulses in two selected wavelength ranges”, Appl. Phys. A 98, 61-65 (2010).
  • 46. A. Bartnik, H. Fiedorowicz, S. Burdyńska, R. Jarocki, J. Kostecki, and M. Szczurek, “Combined effect of EUV irradiation and acetone treatment on PET surface”, Appl. Phys. A103, 173-178 (2011).
  • 47. B. Reisinger, M. Fahrner, 1. Frischauf, S. Yakunin, V. Svorcik, H. Fiedorowicz, A. Bartnik, C. Romanin, and J.Heitz, “EUV micropatterning for biocompatibility control of PET”, Appl. Phys. A100, 511-516 (2010).
  • 48. A. Bartnik, W. Lisowski, J.Sobczak, P.B. Budner, B. Korczyc, and H. Fiedorowicz, “Simultaneous treatment of polymer surface by EUV radiation and ionized nitrogen”, Appl. Phys. A109, 39-43 (2012).
  • 49. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A.Szczurek, M. Szczurek, P. Wachulak, and L. Pina, “X-ray optics for laser-plasma sources: applications of intense SXR and EUV radiation pulses”, Proc. AIP Conf. 1437, 126 (2012).
  • 50. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, R. Rakowski, and M. Szczurek, “Surface changes of solids under intense EUV irradiation using a laser-plasma source”, Proc. SPIE 7361, 73610C (2009).
  • 51. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, M.Szczurek, R. Havlikova, L. Pina, L. Sveda, and A. Inneman, “Response of inorganic materials to laser - plasma EUV radiation focused with a lobster eye collector”, Proc. SPIE 6586, 65860A (2007).
  • 52. A. Bartnik. H. Fiedorowicz, R. Jarocki, J. Kostecki, R. Rakowski, and M. Szczurek, “EUV emission from solids illuminated with a laser-plasma EUV source”, Appl. Phys. B93, 737-741 (2008).
  • 53. R.C. Mancini, J.E. Bailey, J.F. Hawley, T. Kallman, M. Witthoeft, S.J. Rose, H. Takabe, : Accretion disk dynamics, photoionized plasmas, and stellar opacities”, Phys. Plasmas 16,041001 (2009).
  • 54. A. Kinkhabwala. M. Sako, E. Behar, S. Kahn, F. Paerels, A. Brinkman, J. Kaastra, M. Gu, and D. Liedahl, “XMM-Newton reflection grating spectrometer observations of discrete soft X-ray emission features from NGC 1068”, Astrophys. J. 575, 732-746 (2002).
  • 55. R.C. Mancini, J.E. Bailey, J.F. Hawley, T. Kallman, M. Witthoeft, S.J. Rose, and H. Takabe, “Accretion disk dynamics, photoionized plasmas, and stellar opacities”, Phys. Plasmas 16, 041001 (2009).
  • 56. A. Bartnik, P. Wachulak. H. Fiedorowicz, R. Jarocki, J. Kostecki. and M. Szczurek. “Luminescence of He and Ne gases induced by EUV pulses from a laser plasma source”, Radiat. Phys. Chem. 93. 9-13 (2013).
  • 57. A. Bartnik, R. Fedosejevs, P. Wachulak, H. Fiedorowicz, C. Serbanescu, E.G. Saiz, D. Riley, S. Toleikis, and D. Neely “Photo-ionized neon plasmas induced by radiation pulses of a laser-plasma EUV source and a free electron laser FLASH”, Laser Part. Beams 31, 195-201 (2013).
  • 58. A. Bartnik, H. Fiedorowicz, and P. Wachulak, “Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses”, Phys. Plasmas 21, 073303 (2014).
  • 59. K. Schulz, M. Domke, R. Puttner, A. Gutierrez, and G.Kaindl, “High-resolution experimental and theoretical study of singly and doubly excited resonances in ground-state photoionization of neon”, Phys. Rev. A54, 3095-3112 (1996).
  • 60. P.L. Bartlett and A.T. Stelbovics, “Calculation of electron-impact total-ionization cross sections”, Phys. Rev. A66, 012707 (2002).
  • 61. A. Bartnik, H. Fiedorowicz, T. Fok, R. Jarocki, M. Szczurek, and P. Wachulak, “Low temperature photoionized Ne plasmas induced by laser-plasma EUV sources”, to be published in Laser and Particle Beams.
  • 62. A. Bartnik, P. Wachulak, H. Fiedorowicz, T. Fok, R. Jarocki, and M. Szczurek, “Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas”, Phys. Plasmas 20. 113302 (2013).
Uwagi
EN
This work was supported by the grant UMO-2013/09/B/ST2/01625 of the National Science Centre, Poland, by the European Commission’s Seventh Framework Program (LASERLAB-EUROPE), by EU from EUROPEAN REGIONAL DEVELOPMENT FUND, project number: WND-POiG02.01.00-14-095/09.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b981368f-80d9-4d07-803d-9d90ec0472f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.