PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Accounting for Overcounting Induced by 222Rn Contamination in 14C Measurements Performed with Liquid Scintillation Counting

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research paper introduces a methodology for estimating overcounting resulting from uranium series radionuclides, with a specific focus on 222Rn contamination. The method is demonstrated using the Quantulus 1220TM spectrometer. Exponential fitting is employed for the calculations, utilizing a custom algorithm developed in MATLAB® R2022b. The proposed method allows for the determination of the sample count rate correction, F14C and radiocarbon age without the need for additional chemical treatment or specialized electronics during liquid scintillation counting (LSC) measurements with the Quantulus 1220TM spectrometer. However, the method does have certain limitations. It requires a significant number of cycles and extended measurement time per cycle, but it can be applied to samples with significant 222Rn contamination that require rapid 14C analysis.
Czasopismo
Rocznik
Strony
91--99
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, 44-100, Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, 44-100, Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, 44-100, Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, 44-100, Gliwice, Poland
  • Institute of Physics – Centre for Science and Education, Division of Geochronology and Environmental Isotopes, Silesian University of Technology, 44-100, Gliwice, Poland
Bibliografia
  • 1. Box GEP and Cox DR, 1964. An analysis of transformations. Journal of the Royal Statistical Society Series B (Methodological) 26(2): 211–243. DOI: 10.1111/j.2517-6161.1964.tb00553.x.
  • 2. Cothern CR and Rebers PA, editors, 1990. Radon, Radium and Uranium in Drinking Water. Lewis Publishers, Chelsea (United States): 286p.
  • 3. de Vries HL, 1957. The removal of radon from CO2 for use in 14C age measurements. Applied Scientific Research, Section B 6(1): 461–470. DOI: 10.1007/bf02920403.
  • 4. Gupta SK and Polach HA, 1985. Radiocarbon Dating Practices at ANU: Australian National University. Radiocarbon Laboratory, Research School of Pacific Studies, Canberra (Australia): 176p.
  • 5. Hood D, Hatfield R, Patrick C, Stipp J, Tamers M, Leidl R, Lyons B, Polach H, Robertson S and Zhou W, 1989. Radon elimination during benzene preparation for radiocarbon dating by liquid scintillation spectrometry. Radiocarbon 31(3): 254–259. DOI: 10.1017/s0033822200011760.
  • 6. Horvatinčić N, Obelić B, Krajcar Bronić I, Srdoč D and Bistrović R, 1995. Sources of radon contamination in 14C dating. Radiocarbon 37(2): 749–757. DOI: 10.1017/s0033822200031295.
  • 7. IAEA Nuclear Data Services (NDS). NDS ENSDF Database. International Atomic Energy Agency, Vienna, Austria. WEB site:https://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html. Accessed 2023 June 3.
  • 8. Kim C-K, Martin P and Fajgelj A, 2008. Quantification of measurement uncertainty in the sequential determination of 210Pb and 210Po by liquid scintillation counting and alpha-particle spectrometry. Accreditation and Quality Assurance 13(12): 691–702. DOI: 10.1007/s00769-008-0437-z.
  • 9. McCormac FG, 1992. Liquid scintillation counter characterization, optimization and benzene purity correction. Radiocarbon 34(1): 37–45. DOI: 10.1017/s0033822200013400.
  • 10. Michczyńska DJ, Krąpiec M, Michczyński A, Pawlyta J, Goslar T, Nawrocka N, Piotrowska N, Szychowska-Krąpiec E, Waliszewska B and Zborowska M, 2018. Different pretreatment methods for 14C dating of Younger Dryas and Allerød pine wood (Pinus sylvestris L.). Quaternary Geochronology 48: 38–44. DOI: 10.1016/j.quageo.2018.07.013.
  • 11. National Nuclear Data Center (NNDC). NuDat 3.0: Nuclear Structure and Decay Data. 3.0. National Nuclear Data Center, Brookhaven National Laboratory, Brookhaven, NY. WEB site:https://www.nndc.bnl.gov/nudat3/. Accessed 2023 June 3
  • 12. Nero AV and Nazaroff WW, 1984. Characterising the source of radon indoors. Radiation Protection Dosimetry 7(1–4): 23–39. DOI: 10.1093/oxfordjournals.rpd.a082958.
  • 13. Nydal R, 1983. The radon problem in 14C dating. Radiocarbon 25(2): 501–510. DOI: 10.1017/s0033822200005798.
  • 14. Pawlyta J, Pazdur A, Rakowski AZ, Miller BF and Harkness DD, 1997. Commissioning of a Quantulus 1220™ liquid scintillation beta spectrometer for measuring 14C and 3H at natural abundance levels. Radiocarbon 40(1): 201–209. DOI: 10.1017/S0033822200018051.
  • 15. Pazdur A, 1979. On the application of a proportional counter to continuous monitoring of 222Rn concentration in the study of thermal diffusion in Rn–CO2 mixture. Nuclear Instruments and Methods 161(1): 123–129. DOI: 10.1016/0029-554x(79)90369-0.
  • 16. Pazdur A, Fogtman M, Michczyński A and Pawlyta J, 2003. Precision of 14C dating in gliwice radiocarbon laboratory. FIRI programme. Geochronometria 22(1): 27–40.
  • 17. Polach H and Kaihola L, 1988. Determination of radon by liquid scintillation α/β particle spectrometry: Towards the resolution of a 14C dating problem. Radiocarbon 30(1): 19–24. DOI: 10.1017/S0033822200043927.
  • 18. Salonen L and Hukkanen H, 1997. Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring 222Rn, uranium and 226Ra in groundwater samples. Journal of Radioanalytical and Nuclear Chemistry 226(1–2): 67–74. DOI: 10.1007/bf02063626.
  • 19. Schönhofer F, 1989. Determination of radon-222 and radium-226 in mineral water and drinking water – a survey in Austria. The Analyst 114(10): 1345–1347. DOI: 10.1039/an9891401345.
  • 20. Theodórsson P, 2005a. A simple, extremely stable single-tube liquid scintillation system for radiocarbon dating. Radiocarbon 47(1): 89–97. DOI: 10.1017/s003382220005222x.
  • 21. Theodórsson P, 2005b. Simultaneously measuring 14C and radon in benzene dating samples. Radiocarbon 47(2): 231–234. DOI: 10.1017/s0033822200019731.
  • 22. Tudyka K and Bluszcz A, 2011. Very low cost multichannel analyzer with some additional features. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 659(1): 419–421. DOI: 10.1016/j.nima.2011.09.015.
  • 23. Tudyka K and Pazdur A, 2010. Radiocarbon dating of peat profile with metallurgy industry evidence. Geochronometria 35: 3–9. DOI 10.2478/v10003-010-0007-3.
  • 24. Tudyka K, Bluszcz A, Kozłowska B, Pawlyta J and Michczyński A, 2015. Low level 14C measurements in freshly prepared benzene samples with simultaneous 214Bi/214Po pairs counting for routine 222Rn contamination correction. Radiation Measurements 74: 6–11. DOI: 10.1016/j.radmeas.2015.01.010.
  • 25. Tudyka K, Miłosz S, Ustrzycka A, Barwinek S, Barwinek W, Walencik-Łata A, Adamiec G and Bluszcz A, 2017. A low level liquid scintillation spectrometer with five counting modules for 14C, 222Rn and delayed coincidence measurements. Radiation Measurements 105: 1–6. DOI: 10.1016/j.radmeas.2017.06.003.
  • 26. Tudyka K, Pawełczyk F and Michczyński A, 2021. Bias arising from 222Rn contamination in standardized methods for bio-based content determination and a simple removal method. Measurement 167: 108263. DOI: 10.1016/j.measurement.2020.108263.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b97c6fe4-e2f3-44af-9679-67ec2cc04384
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.