PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser surface remelting of powder metallurgy high-speed steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of laser processing on the structure, microstructure and hardness of high-speed steel produced by powder metallurgy was investigated. The samples were surfaces remelted with impulse CO2 laser radiation under different operation conditions. In the remelted layer, the presence of full remelting, partial remelting and heat affected zones was detected. As a result of concentrated laser beam treatment, microstructures characteristic of the rapid crystallization process were observed. The microstructure in the full remelting zone was characterized by a fine microdendritic structure with the average distance between the secondary axes of dendrites below 1 µm and the dissolution of primary carbides. Retained austenite was found in the remelted samples, the amounts of which depended on the treatment parameters and grew with an increase in the speed of the laser beam movement. There was no unequivocal effect of the distance of the irradiated surface from the focus of the beam focusing system on the content of retained austenite. Due to the presence of retained austenite in the remelted part, the hardness decreased by about 23% compared to the hardness of the material before the treatment. On the other hand, laser processing leads to strong refinement of the microstructure and eliminates the residual porosity of powder steels, which can increase the toughness and cutting performance of steel. The research also showed the possibility of shaping the geometry of the remelting zone by the appropriate selection of machining parameters.
Rocznik
Strony
1425--1432
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology, Department of Materials Engineering, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] W. Shen, L. Yu, H. Liu, Y. He, Z. Zhou, and Q. Zhang, “Diffusion welding of powder metallurgy high speed steel by spark plasma sintering”, J. Mater. Process. Technol. 275, 116383 (2020).
  • [2] R. Colaco, E. Gordo, E.M. Ruiz-Navas, M. Otasevic, and R. Vilar, “A comparative study of the wear behaviour of sintered and laser surface melted AISI M42 high speed steel diluted with iron”, Wear 260, 949–956 (2006).
  • [3] N. Chen, R. Luo, H. Xiong, and Z. Li, “Dense M2 high speed steel containing core-shell MC carbonitrides using high-energy ball milled M2/VN composite powders”, Mater. Sci. Eng. A 771, 138628 (2020).
  • [4] G. Zhang, H. Yuan, D. Jiao, Z. Li, Y. Zhang, and Z. Liu, “Micro-structure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing”, Mater. Sci. Eng. A 558, 566–571 (2012).
  • [5] H. Peng, L. Hu, L. Li, L. Zhang, and X. Zhang, “Evolution of the microstructure and mechanical properties of powder metallurgical high-speed steel S390 after heat treatment”, J. Alloys. Compd. 740, 766e773 (2018).
  • [6] J. Kusinski et al., “Laser modification of the materials surface layer – a review paper”, Bull. Pol. Ac.: Tech. 60(4), 711‒728 (2012).
  • [7] Y. Li, S. Arthanari, and Y. Guan, “Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys”, Surf. Coat. Technol. 378, 124964 (2019).
  • [8] J. Iwaszko and K. Kudła, “Surface modification of ZrO2‒10 wt.% CaO plasma sprayed coating”, Bull. Pol. Ac.: Tech. 64(4), 937‒942 (2016).
  • [9] M. Szafarska, J. Iwaszko, K. Kudła, and I. Łęgowik, “Utilisation of high-energy heat sources in magnesium alloy surface layer treatment”, Arch. Metall. Mater. 58(2), 619–624 (2013).
  • [10] J. Iwaszko and M. Strzelecka, “Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy”, Opt. Laser. Eng. 81, 63–69 (2016).
  • [11] J. Winczek, A. Modrzycka, and E. Gawrońska, “Analytical description of the temperature field induced by laser heat source with any trajectory”, Procedia Eng. 149, 553–558 (2016).
  • [12] G. Gontarz, T. Chmielewski, and D. Golański, “Modification of sprayed aluminum layers on steel substrate by the concentrated heat source”, Weld. Tech. Rev. 83(12), 52‒55 (2011).
  • [13] C.T. Kwok, F.T. Cheng, and H.C. Man, “Microstructure and corrosion behavior of laser surface-melted high-speed steels”, Surf. Coat. Technol. 202(2), 336–348 (2007).
  • [14] A.S. Chaus, A.V. Maksimenko, N.N. Fedosenko, Ľ. Čaplovič and V.N. Myshkovets, “Formation of structure of a high-speed steel upon laser surface melting”, Phys. Met. Metallogr. 120(3), 269–277 (2019).
  • [15] R. Ulewicz and F. Nový, “Influence of laser treatment on properties of high speed tool”, Tech. Trans. 10, 195–200 (2018).
  • [16] K.Y. Benyounis, O.M. Fakron, and J.H. Abboud, “Rapid solidification of M2 high-speed steel by laser melting”, Mater. Design 30, 674–678 (2009).
  • [17] S. Kac. J. Kusinski. A. Zielinska-Lipiec, and I. Wrońska, “Scanning electron microscopy and transmission electron microscopy microstructural investigation of high-speed tool steel after Nd:YAG pulsed laser melting”, J. Microsc. 224, 65–67 (2006).
  • [18] S. Kac and J. Kusinski, “SEM and TEM microstructural investigation of high-speed tool steel after laser melting”, Mater. Chem. Phys. 81(2), 510–512 (2003).
  • [19] J. Arias, M. Cabeza, G. Castro, I. Feijoo, P. Merino, and G. Pena, “Microstructural characterization of laser surface melted AISIM2 tool steel”, J. Microsc. 239, 184–193 (2010).
  • [20] J. Arias, M. Cabeza, G. Castro, I. Feijoo, P. Merino, and G. Pena, “Modification of AISI M2 high-speed tool steels after laser-surface melting under different operating conditions”, Weld. Int. 27, 1–9 (2013).
  • [21] P. Jurči, J. Cejp, and J. Brajer, “Metallurgical aspects of laser surface processing of PM Cr-V ledeburitic steel”, Adv. Mater. Sci. Eng. 563410 (2011).
  • [22] A. Surzhenkov, G. Allikas, A. Gregor, S. Zimakov, P. Kulu, and H. Müller, “Laser treatment of surfaces of tool and PM steels and steels with coatings”, in 6th International DAAAM Baltic Conference Industrial Engineering, 2008.
  • [23] R. Vilar, R. Colaço, and A. Almeida, “Laser surface treatment of tool steels”, Opt. Quant. Electron. 27(12), 1273–1289 (1995).
  • [24] W. Bochnowski, “The influence of arc plasma electric and laser treatment on the structure and properties of the high speed steel”, Arch. Foundry Eng. 9(3), 17–20 (2009).
  • [25] C.T. Kwok, F.T. Cheng, H.C. Man, and K.I. Leong, “Laser surface melting of high-speed steels for enhancing surface properties”, in Conference: ICALEO®. 24th International Congress on Laser Materials Processing and Laser Microfabrication, 2005.
  • [26] W. Bochnowski, H. Leitner, L. Major, R. Ebner, and B. Major, “Primary and secondary carbides in high-speed steels after conventional heat treatment and laser modification”, Mater. Chem. Phys. 81(2‒3), 503–506 (2003).
  • [27] Y. Luo, H. Guo, X. Sun, M. Mao, and J. Guo, “Effects of austenitizing conditions on the microstructure of AISI M42 high-speed steel”, Metals 7, 27 (2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b97a7d76-11f5-40f3-85ec-1eef2a5ac2d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.