Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of the experimental verification of the deep hole boring bar tool model. The aim of the work was to obtain a verified boring bar tool model, which in further scientific research will be a starting point for creating a prototype of a tool with a new design, in which dynamic properties will be improved. The research was divided into two stages. In the first stage, modal studies of the model and the real object were carried out. The obtained discrepancy between numerical and experimental results below 8% allows to state that the model is characterized by dynamic properties occurring in the real boring bar. In the second stage of the research, static tests were carried out. The object was loaded with forces of 98.6 N, 195.0 N, 293.8 N. The obtained slight discrepancy in the results of numerical and experimental tests below 3% allows to state that the model reflects the static properties of the real boring bar. The high convergence of the theoretical and experimental results allows for the conclusion that the numerical model has been verified positively.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55--62
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lodz, Poland
autor
- Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lodz, Poland
autor
- Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Lodz, Poland
Bibliografia
- 1. Akesson H, Smirnova T, Hakansson L. Analysis of dynamic properties of boring bars concerning different clamping conditions. Mechanical Systems and Signal Processing 2009; 23 (8): 2629-2647; 10.1016/j.ymssp.2009.05.012.
- 2. Al-Regib E, Ni J, Lee S-H. Programming spindle speed variation for machine tool chatter suppression. International Journal of Machine Tools and Manufacture 2003; 43 (12): 1229-1240: https://doi.org/10.1016/S0890-6955(03)00126-3.
- 3. Bechcinski G, Ewad H, Tsiakoumis V, Pawlowski W, Kepczak N, McMillan A, Batako DL A. A Model and Application of Vibratory Surface Grinding, Journal of Manufacturing Science and Engineering 2018; 140 (10):101011-101011-9; https://doi.org/10.1115/1.4040725.
- 4. Bień J, Krzyżanowski J, Poprawski W, Skoczyński W, Szymkowiak J. Experimental study of bridge structure dynamic characteristics using periodic excitation. Proceedings of ISMA 2002; 2: 555-562.
- 5. Brecher Ch, Baumler S, Guralnik A. Experimental Modal Analysis Using a Tracking Interferometer. CIRP Annals 2014; 63 (1): 345-348; https://doi.org/10.1016/j.cirp.2014.03.131.
- 6. Chen W H, Lu Z R, Lin W, Chen S H, Ni Y Q, Xia Y, Liao W Y. Theoretical and experimental modal analysis of the Guangzhou New TV Tower. Engineering Structures 2011; 33 (12): 3628-3646; https://doi.org/10.1016/j.engstruct.2011.07.028.
- 7. Chomette B, Carrou J-L. Operational Modal Analysis Applied to the Concert Harp. Mechanical Systems and Signal Processing 2015; 56-57: 81-91; https://doi.org/10.1016/j.ymssp.2014.10.011.
- 8. Ebrahimi R, Esfahanian M, Ziaei-Rad S. Vibration Modeling and Modification of Cutting Platform in a Harvest Combine by Means of Operational Modal Analysis (OMA). Measurement 2013; 46 (10): 3959-3967; https://doi.org/10.1016/j.measurement.2013.07.037.
- 9. Falkowicz K, Ferdynus M, Dębski H. Numerical analysis of compressed plates with a cut-out operating in the geometrically nonlinear range. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (2): 222–227; http://dx.doi.org/10.17531/ein.2015.2.8.
- 10. Gagnol V, Le T P, Ray P. Modal Identification of Spindle-tool Unit in High-speed Machining. Mechanical Systems and Signal Processing 2011; 25 (7): 238-2398; https://doi.org/10.1016/j.ymssp.2011.02.019.
- 11. Gurraj S, Guravtar Singh M, Swastik P. Improving the Surface roughness and Flank wear of the boring process using particle damped boring bars. Materials Today: Proceedings 2018; 5 (14): 28186-28194; https://doi.org/10.1016/j.matpr.2018.10.062.
- 12. Karwat B, Rubacha P, Stańczyk E. Simulational and experimental determination of the exploitation parameters of a screw conveyor. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22 (4): 741–747, http://dx.doi.org/10.17531/ein.2020.4.18.
- 13. Kilikevičius A, Rimša V, Rucki M. Investigation of influence of aircraft propeller modal parameters on small airplane performance. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2020; 22 (1): 1–5, http://dx.doi.org/10.17531/ein.2020.1.1.
- 14. Kim N H, Won D, Ziegert J C. Numerical analysis and parameter study of a mechanical damper for use in long slender endmills. International Journal of Machine Tools and Manufacture 2006; 46 (5): 500-507; https://doi.org/10.1016/j.ijmachtools.2005.07.004.
- 15. Li B, Cai H, Mao X, Huang J, Luo B. Estimation of CNC Machine-tool Dynamic Parameters Based on Random Cutting Excitation Through Operational Modal Analysis. International Journal of Machine Tools & Manufacture 2013; 71: 26-40; https://doi.org/10.1016/j.ijmachtools.2013.04.001
- 16. Matsuo M, Yasui T, Inamura T, Matsumura M. High-speed Test of Thermal Effects for a Machine-tool Structure Based on Modal Analysis. Precision Engineering 1986; 8 (2): 72-78; https://doi.org/10.1016/0141-6359(86)90089-9.
- 17. Nangolo N F, Soukup J, Rychlikova L, Skocilas J. A Combined Numerical and Modal Analysis on Vertical Vibration Response of Railway Vehicle. Procedia Engineering 2014; 96: 310-319; https://doi.org/10.1016/j.proeng.2014.12.136.
- 18. Ondra V, Titurus B. Theoretical and experimental modal analysis of a beam-tendon system. Mechanical Systems and Signal Processing 2019; 132: 55-71; https://doi.org/10.1016/j.ymssp.2019.06.016.
- 19. Palanisamy P, Rajendran I, Shanmugasundaram S. Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. The International Journal of Advanced Manufacturing Technology 2007; 32 (7-8): 644-655; 10.1007/s00170-005-0384-3.
- 20. Pawłowski W. Dynamic Model of Oscillation-Assisted Cylindrical Plunge Grinding With Chatter, Journal of Manufacturing Science and Engineering 2013; 135 (5): 051010-051010-6; https://doi.org/10.1115/1.4024819.
- 21. Pawlowski W, Kaczmarek L, Louda P. Theoretical and experimental modal analysis of the cylinder unit filled with PUR foam. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18 (3): 428–435; http://dx.doi.org/10.17531/ein.2016.3.15.
- 22. Product data, 2006. DeltaTron® Accelerometers, Types 4514, 4514-001, 4514-002, 4514-004, 4514-B, 4514-B-001, 4514-B-002 and 4514-B-004, Brüel&Kjær.
- 23. Product data, 2005. Impact Hammers - Types 8206, 8206-001, 8206-002 and 8206-003, Brüel&Kjær.
- 24. Rahmatalla S, Hudson K, Liu Y, Eun H Ch. Finite Element Modal Analysis and Vibration-waveforms in Health Inspection of Old Bridges. Finite Elements in Analysis and Design 2014; 78: 40-46; https://doi.org/10.1016/j.finel.2013.09.006.
- 25. Schmitz T L, Smith K S. Machining Dynamics. Frequency Response to Improved Productivity. Boston, MA: Springer US; 2009; 8-13.
- 26. Sorby K, Ostling D. Precision turning with instrumented vibration-damped boring bars. Procedia CIRP 2018: 77: 666-669; https://doi.org/10.1016/j.procir.2018.08.181.
- 27. http://www.stressebook.com/rigid-body-mode/ Access: 10.04.2020.
- 28. Thomas M D, Knight W A, Sadek M M. The Impact Damper Boring Bar and Its Performance When Cutting. In: S. A. Tobias et al., editors. Proceedings of the Thirteenth International Machine Tool Design and Research Conference; 1973; 47-48; https://doi.org/10.1007/978-1-349-01857-4_7.
- 29. Thorenz B, Friedrich M, Westermann H-H, Dopper F. Evaluation of the influence of different inner cores on the dynamic behavior of boring bars. Procedia CIRP 2019; 81: 1171-1176; https://doi.org/10.1016/j.procir.2019.03.287.
- 30. Vivo A, Brutti C, Leofanti J. Modal Shape Identification of Large Structure Exposed to Wind Excitation by Operational Modal Analysis Technique. Mechanical Systems and Signal Processing 2013; 39 (1-2): 195-206; https://doi.org/10.1016/j.ymssp.2013.03.025.
- 31. Wang M, Zan T, Yang Y, Fei R. Design and implementation of nonlinear TMD for chatter suppression: An application in turning processes. International Journal of Machine Tools and Manufacture 2010; 50 (5): 474-479; https://doi.org/10.1016/j.ijmachtools.2010.01.004.
- 32. Weck M, Brecher C. Werkzeugmaschinen 5. Messtechnische Untersuchung und Beurteilung, dynamische Stabilität. 7th ed. Berlin, Heidelberg, New York: Springer; 2006; 201: 356-366.
- 33. Zaghbani I, Songmene V. Estimation of Machine-tool Dynamic Parameters During Machining Operation Through Operational Modal Analysis. International Journal of Machine Tools & Manufacture 2009; 49 (12-13): 947-957; https://doi.org/10.1016/j.ijmachtools.2009.06.010.
- 34. Zhang G P, Huang Y M, Shi W H, Fu W P. Predicting Dynamic Behaviours of a Whole Machine Tool Structure Based on Computeraided Engineering. International Journal of Machine Tools & Manufacture 2003; 43 (7): 699-706; https://doi.org/10.1016/S0890-6955-(03)00026-9.
- 35. Żywica G, Kaczmarczyk T Z. Experimental evaluation of the dynamic properties of an energy microturbine with defects in the rotating system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (4): 670–678, http://dx.doi.org/10.17531/ein.2019.4.17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9782ee7-36a3-46ea-87a9-2049ff3ad066