PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Differentiation of the breast lesions using statistics of backscattered echoes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to evaluate the accuracy of statistical properties of the backscattered ultrasound in differential diagnosis of the breast lesions. The B-mode images, together with the appropriate RF echoes from the breast lesions and surrounding tissues were collected. The RF data was processed for the statistics of the backscattered echo signals, using K and Nakagami distributions characterized by the M and m parameters, respectively. Based on both, M and m parameters, a set of 18 parameters was derived. From the point of view of the sensitivity of detection of cancer, the best score was obtained using maximum value of M parameter, the best specificity was received using the differential Nakagami parameter (the differential values between lesions and surrounding tissues). In conclusion, quantitative sonography is a method which has potential to be a complementary tool for classification of the breast lesions.
Czasopismo
Rocznik
Tom
Strony
319--328
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Institute of Fundamental Technological Research, Department of Ultrasound Pawinskiego 5b, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Department of Ultrasound Pawinskiego 5b, 02-106 Warsaw, Poland
  • Center of Oncology Memorial Institute Wawelska 15B, 02-034 Warsaw, Poland
  • Institute of Fundamental Technological Research, Department of Ultrasound Pawinskiego 5b, 02-106 Warsaw, Poland
  • Center of Oncology Memorial Institute Wawelska 15B, 02-034 Warsaw, Poland
  • Center of Oncology Memorial Institute Wawelska 15B, 02-034 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Department of Ultrasound Pawinskiego 5b, 02-106 Warsaw, Poland
Bibliografia
  • [1]. W. Zatoński, J. Didkowska, U. Wojciechowska, Cancer in Poland in 2011. Cancer Center and Institute of Oncology M. Sklodowska-Curie Memorial. Warsaw 2013.
  • [2]. US Preventive Services Task Force. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med, Vol. 151,716-26, 2009.
  • [3]. TM. Kolb, J. Lichy, JH. Newhouse, Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology, Vol. 225(1), 165- 175, 2002.
  • [4]. MT. Mendelson, N. Oestreicher, PL Porter., Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Nat Cancer Inst, Vol. 92 (13), 1081-1087, 2000.
  • [5]. American College of Radiology. Breast Imaging Reporting and Data System® (BIRADS®) 5. Reston, Va: American College of Radiology, 2013.
  • [6]. CY. Chen, F. Ye, Particle swarm optimization algorithm, and its application to clustering analysis. IEEE Int. Conf. Networking Sensing Control, Vol. 27, 89-794, 2004.
  • [7]. WJ. Wu, WK. Moon, Ultrasound breast tumor image computer-aided diagnosis with texture and morphological features, Vol. 15, 873-880, 2008.
  • [8]. LC. Zhang, EMC. Wong, Z. Zhang, J. Zhou, Adaptive pyramid filtering for medical ultrasound image enhancement, Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 916-919, 2006.
  • [9]. AT. Stavros, D. Thickman, CL. Rapp, MA. Dennis, SH. Parker, GA. Sisney, Solid breast nodules use of sonography to distinguish between benign and malignant lesions. Radiology, Vol. 196, 123-134, 1995.
  • [10]. PH. Tsui, CC. Huang, CC. Chang, SH. Wang, KK. Shung, Feasibility study of using high-frequency ultrasonic Nakagami imaging, for characterizing the cataract lens in vitro. Phys Med Biol, Vol. 52(21), 6413–6425, 2007.
  • [11]. CC. Huang, PH. Tsui, SH. Wang, Detection of coagulating blood under steady flow by statistical analysis of backscattered signals. IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 54(2), 435–442, 2007.
  • [12]. PH. Tsui, CK. Yeh, CC. Chang, Feasibility exploration of blood flow estimation by contrast-assisted Nakagami imaging. Ultrason Imaging, Vol. 30(3), 133–150, 2008.
  • [13]. PH. Tsui, CC. Chang, MC. Ho, YH. Lee, YS. Chen, CC. Chang, Use of Nakagami statistics and empirical mode decomposition for ultrasound tissue characterization by a nonfocused transducer. Ultrasound Med Biol, Vol. 35(12), 2055–2068, 2009.
  • [14]. RC. Molthen, PM. Shankar, JM. Reid, F. Forsberg, EJ. Halpern, CW. Piccoli, Comparisons of the Rayleigh and K-distribution models using in vivo breast, and liver, tissue; Ultrasound in Med & Biol, Vol. 24, 93-100, 1998.
  • [15]. PM. Shankar, VA. Dumane , T. George , CW. Piccoli , JM. Reid , F. Classification of breast masses in ultrasonic B scans, using Nakagami and K distributions, Phys Med Biol, Vol. 48, 2229-2240, 2003.
  • [16]. PM. Shankar, VA. Dumane , JM. Reid , V. Genis , F. Forsberg , CW. Piccoli, Use of the K-distribution for classification of breast masses, Ultrasound in Med. & Biol, Vol. 26, 1503-1510, 2000.
  • [17]. PM. Shankar , VA. Dumane , JM. Reid , V. Genis , F. Forsberg , CW. Piccoli, Classification of ultrasonic B-mode images of breast masses using Nakagami distribution, IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 48, 569-80, 2001.
  • [18]. PH. Tsui , ChK. Yeh , YY. Liao , CC. Chang , WH. Kuo, Chang KJ, Ultrasonic Nakagami imaging: a strategy to visualize the scatterer properties of benign and malignant breast tumors, Ultrasound in Med & Biol, Vol. 36, 209-217, 2010.
  • [19]. YY. Liao, PH. Tsui, CK. Yen, Classification of Benign and Malignant Breast Tumors by Ultrasound B-scan and Nakagami-based Images, J Med & Biol Eng, Vol. 30, 307- 312, 2009.
  • [20]. PH. Tsui, YY. Liao, CC. Chang, WH. Kuo, KJ. Chang, CK. Yeh. Classification of benign, and malignant, breast tumors by 2-d analysis, based on contour description and scatterer characterization. IEEE Trans Med Imag, Vol. 29(2), 513–522, 2010.
  • [21]. PM. Shankar, A Statistical Model for the Ultrasonic Backscattered Echo From Tissue Containing Microcalcifications, IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 60, 932-942, 2013.
  • [22]. W. Jakubowski, K. Dobruch-Sobczak, B. Migda. Standards of the Polish Ultrasound Society – update. Sonomammography examination J Ultrason 2012; 12 (50): 245–261.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b975d9f7-e3e3-48a0-8605-8535284c5e68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.