PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of thermal backfill parameters on current-carrying capacity of power cables installed in the ground

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Proper design of power installations with the participation of power cables buried in homogeneous and thermally well-conductive ground does not constitute a major problem. The situation changes when the ground is non-homogeneous and thermally low-conductive. In such a situation, a thermal backfill near the cables is commonly used. The optimization of thermal backfill parameters to achieve the highest possible current-carrying capacity is insufficiently described in the standards. Therefore, numerical calculations based on computational fluid dynamics could prove helpful for designers of power cable lines. This paper studies the influence of dimensions and thermal resistivity of the thermal backfill and thermal resistivity of the native soil on the current-carrying capacity of power cables buried in the ground. Numerical calculations were performed with ANSYS Fluent. As a result of the research, proposals were made on how to determine the current-carrying capacity depending on the dimensions and thermal properties of the backfill. A proprietary mathematical function is presented which makes it possible to calculate the cable current-carrying capacity correction factor when the backfill is used. The research is expected to fill the gap in the current state of knowledge included in the provisions of standards.
Rocznik
Strony
art. no. e145565
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Bibliografia
  • [1] F. De León, “Major factors affecting cable ampacity,” in Power Engineering Society General Meeting,2006. IEEE, 2006, p. 6, doi: 10.1109/PES.2006.1708875.
  • [2] S. Czapp and F. Ratkowski, “Optimization of Thermal Backfill Configurations for Desired High-Voltage Power Cables Ampacity,” Energies, vol. 14, no. 5, p. 1452, 2021, doi: 10.3390/en14051452.
  • [3] J. Sundberg, “Evaluation of thermal transfer processes and backfill material around buried high voltage power cables,” Report / Department of Civil and Environmental Engineering, Chalmers University of Technology, vol. 5, 2016,
  • [4] Z.R. Radakovic, M.V. Jovanovic, V.M. Milosevic, and N.M. Ilic, Application of earthing backfill materials in desert soil conditions,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 5288–5297, 2015, doi: 10.3390/app11125623.
  • [5] O.E.-S. Gouda, G.F.A. Osman, W.A. Salem, and S.H. Arafa, “Cyclic loading of underground cables including the variations of backfill soil thermal resistivity and specific heat with temperature variation,” IEEE Trans. Power Deliv., vol. 33, no. 6, pp. 3122–3129, 2018, doi: 10.1109/TPWRD.2018.2849017.
  • [6] O.E. Gouda, A.Z. El Dein, and G.M. Amer, “Effect of the formation of the dry zone around underground power cables on their ratings,” IEEE Trans. Power Deliv., vol. 26, no. 2, pp. 972–978, 2010, doi: 10.1109/TPWRD.2010.2060369.
  • [7] O.E. Gouda and A.Z. El Dein, “Improving underground power distribution capacity using artificial backfill materials,” IET Gener. Transm. Distrib., vol. 9, no. 15, pp. 2180–2187, 2015, doi: 10.1049/iet-gtd.2015.0274.
  • [8] C. Gomes, C. Lalitha, and C. Priyadarshanee, “Improvement of earthing systems with backfill materials,” in 2010 30th International Conference on Lightning Protection (ICLP), 2010, pp. 1–9, doi: 10.1109/ICLP.2010.7845822.
  • [9] A. Cichy, B. Sakowicz, and M. Kaminski, “Economic optimization of an underground power cable installation,” IEEE Trans. Power Deliv., vol. 33, no. 3, pp. 1124–1133, 2017, doi: 10.1109/TPWRD.2017.2728702.
  • [10] IEC 60287-1-1:2006 Electric cables – Calculation of the current rating – Part 1–1 Current rating equations (100% load factor) and calculation of losses – General.
  • [11] IEC 60287-2-1:2015 Electric cables – Calculation of the current rating – Part 2–1 Thermal resistance – Calculation of the thermal resistance.”
  • [12] IEC 60287-3-1:1999 Electric cables – Calculation of the current rating – Part 3–1 Sections on operating conditions – Reference operating conditions and selection of cable type.
  • [13] PN-HD 60364-5-522011 Instalacje elektryczne niskiego napięcia – Część 5–52 Dobór i montaż wyposażenia elektrycznego – Oprzewodowanie (eng. Electrical Low Voltage Installations – Part 5–52 Selection and installation of electrical equipment – Wiring).
  • [14] L. Ramirez and G.J. Anders, “Cables in Backfills and Duct Banks – Neher/McGrath Revisited,” IEEE Trans. Power Deliv., vol. 36, no. 4, pp. 1974–1981, 2020, doi: 10.1109/TPWRD.2020.3017616.
  • [15] F. De Leon and G.J. Anders, “Effects of backfilling on cable ampacity analyzed with the finite element method,” IEEE Trans. Power Deliv., vol. 23, no. 2, pp. 537–543, 2008, doi: 10.1109/TPWRD.2008.917648.
  • [16] J.H. Neher and M.H. McGrath, “The calculation or the temperature rise and load capability of cable systems,” Trans. Am. Inst. Electr. Eng. Part III: Power Appar. Syst., vol. 76, pp. 752-764, 1957, doi: 10.1109/AIEEPAS.1957.4499653.
  • [17] K.E. Saleeby, W.Z. Black, and J.G. Hartley, “Effective thermal resistivity for power cables buried in thermal backfill,” IEEE Trans. Power Appar. Syst., no. 6, pp. 2201–2214, 1979, doi: 10.1109/ TPAS.1979.319419.
  • [18] A.A. Al-Dulaimi, M.T. Güne¸ser, and A.A. Hameed, “Investigation of Thermal Modeling for Underground Cable Ampacity Under Different Conditions of Distances and Depths,” in 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2021, pp. 654–659, doi: 10.1109/ISMSIT52890.2021.9604732.
  • [19] K. Charerndee, R. Chatthaworn, P. Khunkitti, A. Kruesubthaworn, A. Siritaratiwat, and C. Surawanitkun, “Investment Cost Analysis with Structural Design of Concrete Duct Bank Power Cables,” in IOP Conference Series: Materials Science and Engineering, vol. 897, no. 1, 2020, doi: 10.1088/1757-899X/897/1/012007.
  • [20] Y. Yang, Q. Wang, and Z. Liu, “Simulation of Underground Cable Temperature Distribution Based on Multiphysics Modeling,” in 2021 11th International Conference on Power, Energy and Electrical Engineering (CPEEE), 2021, pp. 26–31, doi: 10.1109/CPEEE51686.2021.9383365.
  • [21] O.E. Gouda, A.Z. El Dein, and G.M. Amer, “The effect of the artificial backfill materials on the ampacity of the underground cables,” in 2010 7th International Multi-Conference on Systems, Signals and Devices, 2010, pp. 1–6, doi: 10.1109/SSD.2010.5585551.
  • [22] M. Eckhardt, H. Pham, M. Schedel, and I. Sass, “Investigation ofFluidized Backfill Materials for Optimized Bedding of Buried Power Cables,” in EGU General Assembly Conference Abstracts, 2021, pp. 5654, doi: 10.5194/egusphere-egu21-5654.
  • [23] M. Parol, P. Kapler, J. Marzecki, R. Parol, M. Polecki, and L Rokicki, “Effective approach to distributed optimal operation control in rural low voltage microgrids,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 661–668, 2020, doi: 10.24425/bpasts.2020.134178.
  • [24] I. Wasiak and Z. Hanzelka, “Integration of distributed energy sources with electrical power grid,” Bull. Pol. Acad. Sci. Tech. Sci., pp. 297–309, 2009, doi: 10.2478/v10175-010-0132-1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b972e77c-1f67-4fae-992b-c1fdfc5cce30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.