PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigations of stress concentration in reinforcement steel structure by composite overlays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stress concentration observed in the vicinity of cut-outs and holes in structural elements significantly influences the fatigue endurance of machines subjected to cyclic loads. Numerous studies have been made so far to improve this situation and increase the structure lifetime. Several design recommendations have also been worked out to avoid the problem of premature failure. The proposed article illustrates the influence of the composite overlays applied around the cut-outs made in flat steel constructional elements subjected to axial tension. The detailed study concerns the reinforcement made from the FRP (fibre reinforcement polymer) composite applied around the notches. Two types of composite materials were used, namely: TVR 380 M12/R-glass (glass fibres embedded in epoxy resin matrix) and AS4D/9310 (carbon fibres embedded in epoxy resin matrix). In the first step, the detailed numerical studies (finite element analysis) were performed for the steel samples (with no overlays added) with cut-outs made in the form of circle, square and triangle hole (the last two with rounded corners). The results of these studies were compared with the existing analytical solutions with respect to the stress concentration factors (SCF) estimation. The relatively good conformity was observed when using dense meshes of finite elements placed around the void vicinity. In the next step, the composite overlays were applied around cut-outs and their influence on the stress concentration was investigated. The influence of the fibre orientation, numbers of layers, sizes of the composite overlay used were considered. It was proved that the application of composite overlays evidently decreases the stress concentration around the notches.
Słowa kluczowe
Twórcy
  • Cracow University of Technology Faculty of Mechanical Engineering Institute of Machine Design Jana Pawła II Av. 37, 31-864 Krakow, Poland tel.: + 48 12 3743388, fax: +48 12 3743360
  • Cracow University of Economics Faculty of Commodity Science Department of Product Technology and Ecology Rakowicka Street 27, 31-510 Krakow, Poland tel.: +48 12 2935679, fax: +48 12 2935059
Bibliografia
  • [1] Moszyński, W., Wytrzymałość zmęczeniowa części maszynowych, PWT, Warszawa 1954.
  • [2] Neuber, H., Kerbspannungslehre, Springer, Berlin 1958.
  • [3] Pilkey, W. D., Pilkey, D. F., Peterson’s Stress Concentration Factors, John Wiley & Sons Inc., USA 2008.
  • [4] Kirsch, A., Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre, Z. VDI, Vol. 42, pp. 797, 1989.
  • [5] Inglis, C. E., Stress in a plane due to the presence of cracks and sharp corners, Trans Inst. Naval Arch, vol. 60, London 1913.
  • [6] Muschelisvili, N. I., Nektorye osnovnye zadaci matematiceskoj teorii uprugosti, Izd. A. N. SSSR, II wyd. 1949.
  • [7] Lekhnitskiy, S. G., Anizotropnye Plastinki, Gosudarstvennoye, Izdatel'stvo Tekhniko-Teoreticheskoy Literatury, Moskva 1957.
  • [8] Frocht, M. M., Photoelasticity, Tom I, Tom II, John Wiley, New York 1948.
  • [9] Szybiński, B., Romanowicz, P., Zieliński, A. P., Numerical and experimental analysis of stress and strains in flat ends of high-pressure vessels, Key Engineering Materials, Vol. 490, pp. 226-236, 2012.
  • [10] Szybiński, B., Zagadnienia koncentracji naprężeń w płytach i powłokach – modelowanie i optymalizacja, Monografia 413, Wydawnictwo Politechniki Krakowskiej, Krakow 2013.
  • [11] Zienkiewicz, O. C., Taylor, R. L., Fox, D., The Finite Element Method for Solid and Structural Mechanics, 5th Ed., Elsevier, 2013.
  • [12] Chu, T. C., Ranson, W. F., Sutton, M. A., Peters, W. H., Application of digital-image correlation techniques to experimental mechanics, Experimental Mechanics, Vol. 25 (3), pp. 232-244, 1985.
  • [13] Grote, K. H., Feldhusen, J., (Ed.), Dubbel Taschenbuch fuer den Maschinenbau, 23rd Ed., Springer-Verlag, Berlin Heidelberg 2006.
  • [14] Tan, S. C., Finite-width correction factors for anisotropic plate containing a central opening, Journal of Composite Materials, Vol. 22, pp. 1080-18, 1988.
  • [15] Muc, A., Romanowicz, P., Effect of notch on static and fatigue performance of multilayered composite structures under tensile loads, Journal of Composite Structures, Vol. 178, pp. 27-36, 2017.
  • [16] ANSYS, ver.12.1, Academic Research, Any’s Inc., 2009.
  • [17] Łagoda, M., Kowal, M., CFRP composite material strengthening of flat steel elements to reduce the stresses in the steel, Structure and Environment, Architecture, Civil Engineering, Environmental and Energy, Vol. 6 (4), Kielce 2014.
  • [18] Wang, Y., Zheng, Y., Li, J., Zhang, L., Deng, J., Experimental study on tensile behaviour of steel plates with centre hole strengthened by CFRP plates under marine environment, International Journal of Adhesion and Adhesives, Vol. 84, pp. 18-26, 2018.
  • [19] Wang, Z. Y., Wang, Q. Y., Lia, L., Zhang, N., Fatigue behaviour of CFRP strengthened open-hole steel plates, Thin-Walled Structures, Vol. 115, pp. 176-187, 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b971e7a6-26d4-4d17-ba19-6ad0bbc32de5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.