PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of Biochar for the Production of Organic Fertilizers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fertilizer management is one of the greatest challenges of agriculture in the 21st century. The growing demand for food, along with the similar amount of arable land, creates the necessity of increasing the crop yields in a given area. Due to the fact that the production and use of mineral fertilizers often influence the environment in a negative way, for many years more attention has been paid to natural and organic fertilizers. Their advantage is the transfer of not only organic matter but also nutrients to the soil. In connection with the structural changes in agriculture, the production of natural fertilizers, especially manure decreases, but at the same time, the production of other organic fertilizers, e.g. composts or biochar increases. The aim of the work was to present the possibility of using biochar in the production of organic fertilizers. Moreover, the project concept for obtaining an organic fertilizer containing biochar and its application in the processes of biological transformation of waste was presented.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 46 poz., tab.
Twórcy
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
Bibliografia
  • 1. Act of 10 July 2007 on fertilizers and fertilization
  • 2. Arkhipchenko I.A., Salkinoja-Salonen M.S., Karyakina J.N., Tsitko I. 2005. Study of three fertilizers produced from farm waste. Applied Soil Ecology, 30, 126-132.
  • 3. Beesley L., Moreno-Jimenez E., Gomez-Eyles J. L., Harris E., Robinson B., Sizmur T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269-3282.
  • 4. Bot A. Benites J. 2005. The importance of soil organic matter - Key to drought-resistant soil and sustained food and production. FAO soils bulletin. ISBN 92-5-105366-9.
  • 5. Brockmann D., Pradel M., Hélias A. 2018. Agricultural use of organic residues in life cycle assessment: Current practices and proposal for the computation of field emissions and of the nitrogen mineral fertilizer equivalent. Resources, Conservation and Recycling, 133, 50-62.
  • 6. Cha J.S., Park S.H., Jung S-C., Ryu C., Jeon J-K., Shin M-C., Park Y-K. 2016. Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15.
  • 7. Czekała W., Malińska K., Cáceres R., Janczak D., Dach J., Lewicki A. 2016. Co-composting of poultry manure mixtures amended with biochar – The effect of biochar on temperature and C-CO2 emission. Bioresource Technology, 200, 921–927.
  • 8. Czekała W. Concept of IN-OIL project based on bioconversion of by-products from food processing industry. 2017. Journal of Ecological Engineering, 18(5), 180-185.
  • 9. Czekała W., Dach J., Dong R., Janczak D., Malińska K., Jóźwiakowski K., Smurzyńska A., Cieślik M. 2017. Composting potential of the solid fraction of digested pulp produced by a biogas plant. Biosystems Engineering, 160, 25-29.
  • 10. Czekała W. 2018. Agricultural Biogas Plants as a Chance for the Development of the Agri-Food Sector. Journal of Ecological Engineering, 19(2), 179-183.
  • 11. Dias B.O., Silva C.A., Higashikawa F.S., Roig A., Sanchez-Monedero M.A. 2010. Use of biochar as bulking agent for the composting of poulty manure: Effect on organic matter degradation and humification. Bioresource Technology, 101, 1239-1246.
  • 12. Edwards J., Pittelkow C., Kent A., Yang W. 2018. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biology and Biochemistry, 122, 81-90.
  • 13. Ekielski A., Żelaziński T., Durczak K. 2017. The use of wavelet analysis to assess the degree of wear of working elements of food extruders. Eksploatacja i Niezawodność – Maintenance and Reliability, 19(4), 560-564.
  • 14. Fageria N.K., Baligar V.C., Li Y.C. 2008. The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century. Journal of Plant Nutrition, 31(6), 1121-1157.
  • 15. Flaig W. 1968. Einwirkung von organischen Bodenbestandteilen auf das Pflanzenwachstum. Landwirtsch. Forsch., XXI, 2, 103-127.
  • 16. Gorlach E., Mazur T. 2002. Agricultural Chemistry (in Polish), Wydawnictwo Naukowe PWN, Warszawa.
  • 17. Gwenzi W., Muzava M., Mapanda F., Tauro T.P. 2016. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe. J. Integr. Agric., 15, 1395-1406.
  • 18. Hasegawa H., Furukawa Y., Kimura S.D. 2005. On-farm assessment of organic amendments effects on nutrient status and nutrient use efficiency of organic rice fields in Northeastern Japan. Agriculture, Ecosystems & Environment, 108, 350-362.
  • 19. Jannoura R., Joergensen R.G., Bruns C. 2014. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. European Journal of Agronomy, 52, 259-270.
  • 20. Keating B.A., Herrero M., Carberry P.S., Gardner J., Cole M.B. 2014. Food wedges: Framing the global food demand and supply challenge towards 2050. Global Food Security, 3, 125-132.
  • 21. Ketonen M. 1992. Models of a Continuous Fertilizer Granulation Process - Control Design Application. IFAC Proceedings Volumes 25 (15) 139-144.
  • 22. Kończak M., Oleszczuk P. 2018. Application of biochar to sewage sludge reduces toxicity and improve organisms growth in sewage sludge-amended soil in long term field experiment. Science of The Total Environment, 625, 8-15.
  • 23. Körschens M. 2013. Humus und Klimaänderung. Internationalen Grünen Woche in Berlin am 25. Januar 2013, 1-13.
  • 24. Koszel M., Lorencowicz E. 2015. Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia 7, 119-124.
  • 25. Lehmann J., Rillig M. C., Thies J., Masiello C. A., Hockaday W. C., Crowley D. 2011. Biochar effects on soil biota – A review. Soil Biology & Biochemistry, 43, 1812-1836.
  • 26. Li C., Ma S., Shao Y., Zhang L., 2018. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat. Journal of Integrative Agriculture, 17(1), 210-219.
  • 27. Luz F.C., Cordiner S., Manni A., Mulone V., Rocco V. 2018, Biochar characteristics and early applications in anaerobic digestion-a review. Journal of Environmental Chemical Engineering, 6, 2892-2909.
  • 28. Malińska K. 2012. Biochar - a response to current environmental issues (in polish). Inżynieria i Ochrona środowiska, 4, 387-403.
  • 29. Malińska K., Zabochnicka-Świątek M., Dach J. 2014. Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecological Engineering, 71, 474-478.
  • 30. Malińska K. 2015. Legal and Quality Aspects of Requirements for Biochar (in polish). Inżynieria i Ochrona Środowiska, 18(3), 359-371.
  • 31. Malińska K., Dach J. 2015. Biochar as a supplementary material for biogas production. Ecological Engineering, 41, 117–124.
  • 32. Maiti S., Dey S., Purakayastha S., Gosh B. 2005. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Bioresource Technology, 97, 2065-2070.
  • 33. Mohan D., Pittman Jr. C. U., Arsenic removal from water/wastewater using adsorbents – a critical review. Journal of Hazardous Materials, 142, 1-53.
  • 34. Mumme J., Srocke F., Heeg K., Werner M. 2014. Use of biochars in anaerobic digestion. Bioresource Technology, 164, 189-197.
  • 35. Odlare M., Arthurson V., Pell M., Svensson K., Nehrenheim E., Abubaker J. 2011. Land application of organic waste – Effects on the soil ecosystem. Applied Energy, 88(6), 2210-2218.
  • 36. Oleszczuk P., Rycaj M., Lehmann J., Cornelissen G. 2012. Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum. Ecotoxicol. Environ. Saf. 80, 321-326.
  • 37. Ouni Y., Ghnaya T., Montemurro F., Abdelly Ch., Lakhdar A. 2014. The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. International Journal of Plant Production, 8 (3), 353-374.
  • 38. Saifullah, Dahlawi S., Naeem A., Rengel Z., Naidu R. 2018. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of The Total Environment, 625, 320-335.
  • 39. Steinbeiss et al., 2009 Effects of biochar amendment on soil carbon balance and soul microbal activity. Soil Biology & Biochemistry, 41, 1301-1310.
  • 40. Tóth G., Montanarella L., Rusco E., 2008. Updated Map of Salt Affected Soils in the European Union, Threats to Soil Quality in Europe, Office for the Official Publications of the European Communities, 61-74.
  • 41. Yu X., Mu Ch., Gu Ch., Liu C., Liu X. 2011. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere, 85, 1284-1289.
  • 42. Verheijen, F.G.A., Jeffery S., Bastos A.C., ver der Velde M., Diafas I. 2009, Biochar application to soils-a critical scientific review of effects on soil properties, processes and functions. In: EUR 24099 EN. Office for the Official Publications of the European Communities, Luxembourg.
  • 43. Vikrant K., Kim K., Ok Y.S., Tsang D.C.W., Tsang Y.F., Giri B.S., Singh R.S. 2018, Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of the Total Environment, 616-917, 1242-1260.
  • 44. Weber K., Quciker P. 2018. Properties of biochar. Fuel, 217, 240-261.
  • 45. Wojcieszak D., Przybył J., Lewicki A., Ludwiczak A., Przybylak A., Boniecki P., Koszela K., Zaborowicz M., Przybył K., Witaszek K. 2015. Use of neural image analysis methods in the process of determine the dry matter content in the compost. Proc. of SPIE Vol. 9631 963118-1.
  • 46. Zhang D., Pan G., Wu G., Kibue G.W., Li L., Zhang X., Zheng J., Zheng J., Cheng K., Joseph S., Liu X. 2016. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 142, 106-113.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b96be06a-6a9d-4314-a2d8-1890b14bbaed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.