Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Accurate biomechanical modeling is crucial for enhancing the realism of virtual surgical training. This study addressed the computational cost and complexity associated with traditional viscoelastic models by incorporating neural network algorithms, thereby augmenting the predictive capability of soft tissue modeling. Methods: To address these challenges, the present study proposed a novel biomechanical modeling approach. The approach establishes a relaxation prediction model based on the backpropagation (BP) neural network and optimizes it using an enhanced sparrow search algorithm (ISSA). This hybrid method leverages the dynamic characteristics of forceps to predict the relaxation force of soft tissues more accurately. The ISSA optimizes the model by integrating chaos mapping, nonlinear inertia weight, and vertical–horizontal crossover strategy, which helps overcome the issue of local optima and boosts the predictive performance. Results: The experimental results demonstrated that the R2 values reached 0.9956 for the pig kidney and 0.9896 for the pig stomach, indicating the model’s exceptional precision in predicting relaxation forces. Conclusions: The relaxation force prediction model based on ISSA-BP neural network provides excellent predictive performance, offering a new and effective strategy for biomechanical modeling of soft tissues in virtual surgical systems.
Czasopismo
Rocznik
Tom
Strony
89--98
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, China.
autor
- School of Mechanical Engineering, Shenyang University of Technology, China.
autor
- School of Biological Science and Medical Engineering, Beihang University, China.
autor
- The Fourth Medical Center of China General Hospital of People’s Liberation Army, China.
Bibliografia
- [1] ARORA S., ANAND P., Chaotic grasshopper optimization algorithm for global optimization, Neural. Comput. Appl., 2019, 31, 4385–4405, https://doi.org/10.1007/s00521-018-3343-2
- [2] BARR M.L., HAVELES C.S., REZZADEH K.S., NOLAN I.T., CASTRO R., LEE J.C., STEINBACHER D. et al., Virtual surgical planning for mandibular reconstruction with the fibula free flap: a systematic review and meta-analysis, Ann. Plas. Surg., 2020, 84, 117–122, https://doi.org/10.1007/s00521-018-3343-2
- [3] BHANDARI K., LIN C.-H., LIAO H.-T., Secondary mandible reconstruction with computer-assisted-surgical simulation and patient-specific pre-bent plates: the algorithm of virtual planning and limitations revisited, Applied Sciences, 2022, 12, 4672, https://doi.org/10.3390/app12094672
- [4] BROUWER I., MORA V., LAROCHE D., A viscoelastic soft tissue model for haptic surgical simulation, Second Joint Euro Haptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07)ed., IEEE 2007, 593–594.
- [5] CALVO-GALLEGO J.L., DOMÍNGUEZ J., CÍA T.G., CIRIZA G.G., MARTÍNEZ-REINA J., Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study, J. Mech. Behav. Biomed., 2018, 80, 293–302, https://doi.org/10.1016/j.jmbbm.2018.02.013
- [6] CHANDA A., CALLAWAY C., Tissue anisotropy modeling using soft composite materials, Appl. Bionics Biomech., 2018, 2018, 4838157, https://doi.org/10.1155/2018/4838157
- [7] DOKEROGLU T., SEVINC E., KUCUKYILMAZ T., COSAR A., A survey on new generation metaheuristic algorithms, Comput. Ind. Eng., 2019, 137, 106040, https://doi.org/10.1016/j.cie.2019.106040
- [8] DUAN Y., LIU C., Sparrow search algorithm based on Sobol sequence and crisscross strategy, Journal of Computer Applications 2022, 42, 36.
- [9] DUAN Y., MU C., YANG M., DENG Z., CHIN T., ZHOU L., FANG Q., Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: evidence from Chinese manufacturing firms, Int. J. Prod. Econ., 2021, 242, 108293, https://doi.org/10.1016/j.ijpe.2021.108293
- [10] FRIIS S.J., HANSEN T.S., POULSEN M., GREGERSEN H., BRÜEL A., NYGAARD J.V., Biomechanical properties of the stomach: A comprehensive comparative analysis of human and porcine gastric tissue, J. Mech. Behav. Biomed., 2023, 138, 105614, https://doi.org/10.1016/j.jmbbm.2022.105614
- [11] FUNG Y.-C., Biomechanics: mechanical properties of living tissues, Springer Science & Business Media, 2013.
- [12] HASLACH Jr H.W., Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue, Biomech. Model Mechan., 2005, 3, 172–189, https://doi.org/10.1007/s10237-004-0055-6
- [13] HOLZER C.S., PUKALUK A., VIERTLER C., REGITNIG P., CAULK A.W., ESCHBACH M., CONTINI E.M. et al., Biomechanical characterization of the passive porcine stomach, Acta Biomater., 2024, 173, 167–183, https://doi.org/10.1016/j.actbio.2023.11.008
- [14] JIA Z., LI W., ZHOU Z., Mechanical characterization of stomach tissue under uniaxial tensile action, J. Biomech., 2015, 48, 651–658, https://doi.org/10.1016/j.jbiomech.2014.12.048
- [15] JULIE F.S., STRØM H.T., METTE P., HANS G., VINGE N.J., Dynamic viscoelastic properties of porcine gastric tissue: effects of loading frequency, region and direction, J. Biomech., 2022, 143, 111302, https://doi.org/10.1016/j.jbiomech.2022.111302
- [16] KHAN H., ABBASI S.J., LEE M.C., DPSO and inverse jacobian-based real-time inverse kinematics with trajectory tracking using integral SMC for teleoperation, IEEE Access, 2020, 8, 159622–159638.
- [17] KHAN M., MASOOD F., A novel chaotic image encryption technique based on multiple discrete dynamical maps, Multimed. Tools Appl., 2019, 78, 26203–26222, https://doi.org/10.1007/s11042-019-07818-4
- [18] LESCH H., JOHNSON E., PETERS J., CENDÁN J.C., VR simulation leads to enhanced procedural confidence for surgical trainees, J. Surg. Educ., 2020, 77, 213–218, https://doi.org/10.1016/j.jsurg.2019.08.008
- [19] LI F., LIU J., LIU X., WU Y., QIAN L., HUANG W., LI Y., Comparison of the Biomechanical Properties between Healthy and Whole Human and Porcine Stomachs, Bioengineering, 2024, 11, 233, https://doi.org/10.3390/bioengineering11030233
- [20] LI J., BI X., ZHANG K., ZHANG C., LIU H., Experimental study on the effects of shear stress on viscoelastic properties of the intestines, Sci. China Technol. Sc., 2019, 62, 1028–1034, https://doi.org/10.1007/s11431-018-9428-4
- [21] LIU Z., HU C., XIANG T., HU P., LI X., YU J., A Novel Sparrow Search Scheme Based on Enhanced Differential Evolution Operator, IEEE T. Em. Top Comp. I., 2024, DOI, 10.1109/TETCI.2024.3437202.
- [22] LU Y.-C., UNTAROIU C.D., Effect of storage methods on indentation-based material properties of abdominal organs, P. I. Mech. Eng. H., 2013, 227, 293–301, https://doi.org/10.1177/0954411912468558
- [23] MA J., HAO Z., SUN W., Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems, Inform. Process Manag., 2022, 59, 102854, https://doi.org/10.1016/j.ipm.2021.102854
- [24] MENG A.-B., CHEN Y.-C., YIN H., CHEN S.-Z., Crisscross optimization algorithm and its application, Knowl.-Based Syst., 2014, 67, 218–229, https://doi.org/10.1016/j.knosys.2014.05.004
- [25] MIRJALILI S., GANDOMI A.H., Chaotic gravitational constants for the gravitational search algorithm, Appl. Soft. Comput., 2017, 53, 407–419, https://doi.org/10.1016/j.asoc.2017.01.008
- [26] NORDSLETTEN D., CAPILNASIU A., ZHANG W., WITTGENSTEIN A., HADJICHARALAMBOUS M., SOMMER G., SINKUS R. et al., A viscoelastic model for human myocardium, Acta Biomater., 2021, 135, 441–457, https://doi.org/10.1016/j.actbio.2021.08.036
- [27] PEDRAM S., KENNEDY G., SANZONE S., Toward the validation of VR-HMDs for medical education: a systematic literature review, Virtual Real-London, 2023, 27, 2255–2280, https://doi.org/10.1007/s10055-023-00802-2
- [28] QIANG B., GREENLEAF J., OYEN M., ZHANG X., Estimating material elasticity by spherical indentation load-relaxation tests on viscoelastic samples of finite thickness, IEEE T. Ultrason. Ferr., 2011, 58, 1418–1429, DOI: 10.1109/TUFFC.2011.1961.
- [29] ROSEN J., BROWN J.D., DE S., SINANAN M., HANNAFORD B., Biomechanical properties of abdominal organs in vivo and postmortem under compression loads, J. Biomech. Eng.-T. Asme, 2008, https://doi.org/10.1115/1.2898712
- [30] RUMELHART D.E., HINTON G.E., WILLIAMS R.J., Learning representations by back-propagating errors, Nature, 1986, 323, 533–536, https://doi.org/10.1038/323533a0
- [31] SOPAKAYANG R., DE VITA R., A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues, Med. Eng. Phys., 2011, 33, 1056–1063, https://doi.org/10.1016/j.medengphy.2011.04.012
- [32] TAKÁCS Á., RUDAS I.J., HAIDEGGER T., Surface deformation and reaction force estimation of liver tissue based on a novel nonlinear mass–spring–damper viscoelastic model, Med. Biol. Eng. Comput., 2016, 54, 1553–1562, https://doi.org/10.1007/s11517-015-1434-0
- [33] XU S., LIU X.P., ZHANG H., HU L., A nonlinear viscoelastic tensor-mass visual model for surgery simulation, IEEE T Instrum. Meas., 2010, 60, 14–20, DOI: 10.1109/TIM.2010.2065450.
- [34] XUE J., SHEN B., A novel swarm intelligence optimization approach: sparrow search algorithm, Syst. Sci. Control. Eng., 2020, 8, 22–34, https://doi.org/10.1080/21642583.2019.1708830
- [35] YE X., ZHANG J., LI P., WANG T., GUO S., A fast and stable vascular deformation scheme for interventional surgery training system, Biomed. Eng. Online, 2016, 15, 1–14, https://doi.org/10.1186/s12938-016-0148-3
- [36] ZHANG J., LI L., ZHANG H., WANG F., TIAN Y., A novel sparrow search algorithm with integrates spawning strategy, Cluster Comput., 2024, 27, 1753–1773, https://doi.org/10.1007/s10586-023-04036-4
- [37] ZHANG W., CHEN H.Y., KASSAB G.S., A rate-insensitive linear viscoelastic model for soft tissues, Biomaterials, 2007, 28, 3579–3586, https://doi.org/10.1016/j.biomaterials.2007.04.040
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9662d62-f6f7-4353-97be-932b7f7bdaec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.