PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phylogenetic and variability study on all known hemagglutinin subtypes of influenza A virus

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hemagglutinin (HA) is a surface glycoprotein found in influenza viruses. This particle plays two crucial functions in the viral life cycle: it allows for the attachment of the virus into the host cell and participates in the fusion of the virus and host membranes. There are 18 different subtypes of HA. Recently, the H17 and H18 strains have been discovered whose hosts were bats. The evolution of these two strains had most likely occurred in isolation for a long period of time. This work presents the phylogenetic analysis and study on mutational variability based on sequences from all 18 currently known HA strains belonging to influenza virus type A. The results have been presented regarding the current knowledge about influenza. The classical software (Clustal, PHYLIP, and ConSurf) as well as original applications (SSSSg and Consensus Constructor) have been used in this research.
Słowa kluczowe
Rocznik
Strony
153--159
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland,
autor
  • Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
Bibliografia
  • 1. Sriwilaijaroen N, Suzuki Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proc Jpn Acad Ser B Phys Biol Sci 2012;88:226–49.
  • 2. Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Ĺ resolution. Nature 1983;303:35–40.
  • 3. Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med 2009;82:153–9.
  • 4. Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 2006;312:404–10.
  • 5. Russell RJ, Kerry PS, Stevens DJ, Steinhauer DA, Martin SR, Gamblin SJ, et al. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc Natl Acad Sci USA 2008;105:17736–41.
  • 6. Huang Q, Sivaramakrishna RP, Ludwig K, Korte T, Bottcher C, Herrmann A. Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. Biochim Biophys Acta 2003;1614:3–13.
  • 7. Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 2010;285:28403–9.
  • 8. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New world bats harbor diverse influenza A viruses. PLoS Pathog 2013;9:e1003657.
  • 9. Mehle A. Unusual influenza A viruses in bats. Viruses 2014;6:3438–49.
  • 10. Wong SS, Webby RJ. Traditional and new influenza vaccines. Clin Microbiol Rev 2013;26:476–92.
  • 11. The UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res 2015;43:D204–12.
  • 12. Liu J, Stevens DJ, Haire LF, Walker PA, Coombs PJ, Russell RJ, et al. Structures of receptor complexes formed by hemagglutinins from the Asian influenza pandemic of 1957. Proc Natl Acad Sci USA 2009;106:17175–80.
  • 13. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res 2000;28:235–42.
  • 14. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–8.
  • 15. Lassmann T, Frings O, Sonnhammer EL. Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res 2009;37:858–65.
  • 16. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, et al. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 2011;39:W13–7.
  • 17. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 1988;16:10881–90.
  • 18. Górecki A, Leluk J, Lesyng B. A Java-implementation of a genetic semihomology algorithm (GEISHA), and its applications for analyses of selected protein families. Eur J Biochem 2004;271:30.
  • 19. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, 2005.
  • 20. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38:W529–33.
  • 21. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 2016;44:W344–50.
  • 22. Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, et al. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Israel J Chem 2013;53:199–206.
  • 23. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 2005;33:W299–302.
  • 24. Gajewska E, Leluk J. An approach to sequence similarity significance estimation. Bio-Algorithms Med-Syst 2005;1:121–4.
  • 25. Perričre G, Gouy M. WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 1996;78:364–9.
  • 26. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12.
  • 27. Fogtman A, Leluk J, Lesyng B. β-Spectrin consensus sequence construction with variable threshold parameters; verification of usefulness. Bio-Algorithms Med-Syst 2005;1:117–20.
  • 28. Sun X, Tse LV, Ferguson AD, Whittaker GR. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol 2010;84:8683–90.
  • 29. Zhang Y, Sun Y, Sun H, Pu J, Bi Y, Shi Y, et al. A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity and neurovirulence of H5N1 influenza virus in mice. J Virol 2012;86:6924–31.
  • 30. Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA. Composition and functions of the influenza fusion peptide. Protein Pept Lett 2009;16:766–78.
  • 31. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25: 3389–402.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9657341-7aea-459b-bfda-9f84911c4478
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.