PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized DC loop current attack against the KLJN secure key exchange scheme

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new attack against the Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system is studied with unknown parasitic DC-voltage sources at both Alice’s and Bob’s ends. This paper is the generalization of our earlier investigation with a single-end parasitic source. Under the assumption that Eve does not know the values of the parasitic sources, a new attack, utilizing the current generated by the parasitic dc-voltage sources, is introduced. The attack is mathematically analyzed and demonstrated by computer simulations. Simple defense methods against the attack are shown. The earlier defense method based solely on the comparison of current/voltage data at Alice’s and Bob’s terminals is useless here since the wire currents and voltages are equal at both ends. However, the more expensive version of the earlier defense method, which is based on in-situ system simulation and comparison with measurements, works efficiently.
Rocznik
Strony
607--616
Opis fizyczny
Bibliogr. 30 poz., rys., wzory
Twórcy
  • Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128, USA
  • Texas A&M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128, USA
Bibliografia
  • [1] Kish, L. B. (2017). The Kish Cypher: The Story of KLJN for Unconditional Security. New Jersey: World Scientific.
  • [2] Kish, L. B. (2006). Totally secure classical communication utilizing Johnson (-like) noise and Kirchoff’s law. Phys. Lett. A, 352 (3), 178-182.
  • [3] Kish, L. B., & Granqvist, C. G. (2014). On the security of the Kirchhoff-law-Johnson-noise (KLJN) communicator. Quantum Information Processing, 13 (10), 2213-2219.
  • [4] Kish, L. B., Granqvist, C. G. (2016). Comments on "A New Transient Attack on the Kish Key Distribution System.” Metrol. Meas. Syst., 23 (3), 321–331.
  • [5] Gunn, L. J, Andrew, A., Derek, A. (2015). A new transient attack on the kish key distribution system. IEEE Access, 3, 1640-1648.
  • [6] Cho, A. (2005). Simple noise may stymie spies without quantum weirdness. Science, 309 (5744), 2148.
  • [7] Kish, L. B., Scheuer, J. (2010). Noise in the wire: The real impact of wire resistance for the Johnson (-like) noise based secure communicator. Phys. Lett. A, 374 (21), 2140-2142.
  • [8] Kish, L. B., Granqvist, C.-G. (2014). Elimination of a Second-Law-attack, and all cable-resistance-based attacks, in the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Entropy, 16 (10), 5223-5231.
  • [9] Vadai, G., Gingl, Z., Mingesz, R. (2016). Generalized attack protection in the Kirchhoff-Law-Johnson-Noise secure key exchanger. IEEE Access, 4, 1141-1147.
  • [10] Hao, F. (2006). Kish’s key exchange scheme is insecure. IEE Proceedings-Information Security, 153 (4), 141-142.
  • [11] Kish, L. B. (2006). Response to Feng Hao’s paper Kish’s key exchange scheme is insecure. Fluct. Noise Lett., 6 (4), C37-C41.
  • [12] Chen, H.-P., Gonzalez, E., Saez, Y., Kish, L. B. (2015). Cable capacitance attack against the KLJN secure key exchange. Information, 6 (4), 719-732.
  • [13] Kish, L. B. (2013). Enhanced secure key exchange systems based on the Johnson-noise scheme. Metrol. Meas. Syst., 20 (2), 191-204.
  • [14] Melhem, M. Y., Kish, L. B. (2019). A static-loop-current attack against the Kirchhoff-Law-Johnson Noise (KLJN) secure key exchange system. Applied Sciences, 9 (4), 666.
  • [15] Kish, L. B., Granqvist, C. G. (2016). Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange. Metrol. Meas. Syst., 23 (1), 3-11.
  • [16] Chen, H.-P., Mohammad, M., Kish, L. B. (2016). Current injection attack against the KLJN secure key exchange. Metrol. Meas. Syst., 23 (2), 173-181.
  • [17] Kish, L. B. (2006). Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson (-like)-noise cipher and expansion by voltage-based security. Fluct. Noise Lett., 6 (1), L57-L63.
  • [18] Kish, L. B., Horvath, T. (2009). Notes on recent approaches concerning the Kirchhoff-law–Johnson-noise-based secure key exchange. Phys. Lett. A, 373 (32), 2858-2868.
  • [19] Kish, L. B., Abbott, D., Granqvist, C. G. (2013). Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-law-Johnson-noise scheme. textitPloS one, 8 (12), e81810.
  • [20] Vadai, G., Mingesz, R., Gingl, Z. (2015). Generalized Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system using arbitrary resistors. Scientific reports, 5, 13653.
  • [21] Kish, L. B. (2006). Methods of using existing wire lines (power lines, phone lines, internet lines) for totally secure classical communication utilizing Kirchoff’s Law and Johnson-like noise. arXiv preprint physics/0610014.
  • [22] Gonzalez, E., Kish, L. B., Balog, R. S., Enjeti, P. (2013). Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters. PLOS ONE, 8 (7), e70206.
  • [23] Kish, L. B., Entesari, K., Granqvist, C.-G., Kwan, C. (2017). Unconditionally secure credit/debit card chip scheme and physical unclonable function. Fluct. Noise Lett., 16 (1), 1750002.
  • [24] Kish, L. B., Kwan, C. (2013). Physical unclonable function hardware keys utilizing Kirchhoff-law-Johnson-noise secure key exchange and noise-based logic. Fluct. Noise Lett., 12(3), 1350018.
  • [25] Saez, Y., Cao, X., Kish, L. B., Pesti, G. (2014). Securing vehicle communication systems by the KLJN key exchange protocol. Fluct. Noise Lett., 13 (3), 1450020.
  • [26] Cao, X., Saez, Y., Pesti, G., Kish, L. B. (2015). On KLJN-based secure key distribution in vehicular communication networks. Fluct. Noise Lett., 14 (1), 1550008.
  • [27] Melhem Y. M., Kish L. B. (2018). The problem of information leak due to parasitic loop currents and voltages in the KLJN secure key exchange scheme. 8th International Conference on Unsolved Problems on Noise (UPoN-2018), July 9-13, 2018, Gdańsk, Poland.
  • [28] Chen, H.-P., Kish, L. B., Granqvist, C. G. (2014). On the “cracking” scheme in the paper “A directional coupler attack against the Kish key distribution system” by Gunn, Allison and Abbott. Metrol. Meas. Syst., 21 (3), 389-400.
  • [29] Chen, H.-P., Kish, L. B., Granqvist, C. G., Schmera, G. (2014). Do electromagnetic waves exist in a short cable at low frequencies? What does physics say? Fluct. Noise Lett., 13 (2), 1450016.
  • [30] Kish, L. B., Gingl, Z., Mingesz, R., Vadai, G., Smulko, J., Granqvist, C. G. (2015). Analysis of an attenuator artifact in an experimental attack by Gunn-Allison-Abbott against the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system. Fluct. Noise Lett., 14 (1), 1550011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9650376-e658-4f94-835e-398f27dd3860
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.