Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fractional derivatives are useful tools for many applications in different branch of science such as optics and engineering. In this paper, the ∧-fractional frame that is obtained along a space curve by using the ∧-fractional derivative is being examined in Euclidean E3 space. In addition, the Darboux vector of the ∧-fractional Frenet frame is constructed. Then the curvatures of the standard Frenet frame, the ∧-fractional Frenet frame and the ∧-fractional Darboux vector are compared geometrically.
Rocznik
Tom
Strony
109--120
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Department Mathematics, University Kilis 7 Aralık Kilis, Turkey
autor
- Department Mathematics, University Kilis 7 Aralık Kilis, Turkey
Bibliografia
- [1] Baleanu, D., & Fernandez, A. (2019). On fractional operators and their classifications. Mathematics,7(9), 830-840.
- [2] Miller, K.S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley.
- [3] Samko, S.G., Kilbas, A.A., & Marichev, O.I. (1993). Fractional Integrals and Derivatives, Theory and Applications. Yverdon: Gordon and Breach Science Publishers.
- [4] Bagley, R.L., & Torvik, P.J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27, 201.
- [5] Baleanu, D., & Trujillo, J.J. (2010). A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 15(5), 1111-1115.
- [6] Bas, E., & Ozarslan, R. (2018). Real world applications of fractional models by Atangana--Baleanu fractional derivative. Chaos Solitons & Fractals, 116, 121-125.
- [7] El-Nabulsi, R.A. (2020). On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proceedings of the Royal Society A, 476, 20190729.
- [8] Yajima, T., & Nagahama, H. (2018). Geometric structures of fractional dynamical systems in non-Riemannian space: Applications to mechanical and electromechanical systems. Annals of Physics, 530(5).
- [9] El-Nabulsi, R.A. (2020). Fractional nonlocal Newton’s law of motion and emergence of Bagley--Torvik equation. Journal of Peridynamics and Nonlocal Modeling, 2, 50-58.
- [10] Aydín, M.E., Bektas,, M., Ogrenmis,, A.O., & Yokus,, A. (2021). Differential geometry of curves in euclidean 3-space with fractional order. International Electronic Journal of Geometry, 14(1),132-144.
- [11] Baleanu, D. (2011). Fractional almost Kähler-Lagrange geometry. Nonlinear Dynamics, 64(4),365-373.
- [12] Gozutok, U., Coban, H.A., & Sagiroglu, Y. (2019). Frenet frame with respect to conformable derivative. Filomat, 33(6), 1541-1550.
- [13] Herrmann, R. (2014). Towards a geometric interpretation of generalized fractional integrals-Erdelyi-Kober type integrals on RN as an example. Fractional Calculus and Applied Analysis,17(2), 361-370.
- [14] Lazopoulos, K.A., & Lazopoulos, A.K. (2021). On fractional geometry of curves. Fractal and Fractional, 5, 161.
- [15] Lazopoulos, K.A., & Lazopoulos, A.K. (2017). Fractional vector calculus and fluid mechanics. Journal of the Mechanical Behavior of Materials, 26, 43-54.
- [16] Lazopoulos, K.A., & Lazopoulos, A.K. (2016). Fractional differential geometry of curves & surfaces. Progress in Fractional Differentiation and Applications, 2(3), 169-186.
- [17] Yajima, T., Oiwa, S., & Yamasaki, K. (2018). Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas. Fractional Calculus and Applied Analysis, 21(6), 1493-1505.
- [18] Lazopoulos, K.A. (2022). On ∧-fractional differential equations. Foundations, 2, 726-745.
- [19] Farouki, R.T. (2008). Pythagorean-Hodograph Curves: Algebra and Geometry. Springer.
- [20] Biard, L., Farouki, R.T., & Szafran, N. (2010). Construction of rational surface patches bounded by lines of curvature. Computer Aided Geometric Design, 27(5), 359-371.
- [21] Farouki, R.T., Kim, S.H., & Moon, H.P. (2020). Construction of periodic adapted orthonormal frames on closed space curves. Computer Aided Geometric Design, 76, 101802.
- [22] Farouki, R.T., Giannelli, C., Sampoli, M.L., & Sestini, A. (2014). Rotation-minimizing osculating frames. Computer Aided Geometric Design, 31(1), 27-42.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b96414bd-f088-463f-af51-541e948cff11