PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Darboux vector of a new fractional frame

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractional derivatives are useful tools for many applications in different branch of science such as optics and engineering. In this paper, the ∧-fractional frame that is obtained along a space curve by using the ∧-fractional derivative is being examined in Euclidean E3 space. In addition, the Darboux vector of the ∧-fractional Frenet frame is constructed. Then the curvatures of the standard Frenet frame, the ∧-fractional Frenet frame and the ∧-fractional Darboux vector are compared geometrically.
Rocznik
Strony
109--120
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Department Mathematics, University Kilis 7 Aralık Kilis, Turkey
autor
  • Department Mathematics, University Kilis 7 Aralık Kilis, Turkey
Bibliografia
  • [1] Baleanu, D., & Fernandez, A. (2019). On fractional operators and their classifications. Mathematics,7(9), 830-840.
  • [2] Miller, K.S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley.
  • [3] Samko, S.G., Kilbas, A.A., & Marichev, O.I. (1993). Fractional Integrals and Derivatives, Theory and Applications. Yverdon: Gordon and Breach Science Publishers.
  • [4] Bagley, R.L., & Torvik, P.J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27, 201.
  • [5] Baleanu, D., & Trujillo, J.J. (2010). A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Communications in Nonlinear Science and Numerical Simulation, 15(5), 1111-1115.
  • [6] Bas, E., & Ozarslan, R. (2018). Real world applications of fractional models by Atangana--Baleanu fractional derivative. Chaos Solitons & Fractals, 116, 121-125.
  • [7] El-Nabulsi, R.A. (2020). On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proceedings of the Royal Society A, 476, 20190729.
  • [8] Yajima, T., & Nagahama, H. (2018). Geometric structures of fractional dynamical systems in non-Riemannian space: Applications to mechanical and electromechanical systems. Annals of Physics, 530(5).
  • [9] El-Nabulsi, R.A. (2020). Fractional nonlocal Newton’s law of motion and emergence of Bagley--Torvik equation. Journal of Peridynamics and Nonlocal Modeling, 2, 50-58.
  • [10] Aydín, M.E., Bektas,, M., Ogrenmis,, A.O., & Yokus,, A. (2021). Differential geometry of curves in euclidean 3-space with fractional order. International Electronic Journal of Geometry, 14(1),132-144.
  • [11] Baleanu, D. (2011). Fractional almost Kähler-Lagrange geometry. Nonlinear Dynamics, 64(4),365-373.
  • [12] Gozutok, U., Coban, H.A., & Sagiroglu, Y. (2019). Frenet frame with respect to conformable derivative. Filomat, 33(6), 1541-1550.
  • [13] Herrmann, R. (2014). Towards a geometric interpretation of generalized fractional integrals-Erdelyi-Kober type integrals on RN as an example. Fractional Calculus and Applied Analysis,17(2), 361-370.
  • [14] Lazopoulos, K.A., & Lazopoulos, A.K. (2021). On fractional geometry of curves. Fractal and Fractional, 5, 161.
  • [15] Lazopoulos, K.A., & Lazopoulos, A.K. (2017). Fractional vector calculus and fluid mechanics. Journal of the Mechanical Behavior of Materials, 26, 43-54.
  • [16] Lazopoulos, K.A., & Lazopoulos, A.K. (2016). Fractional differential geometry of curves & surfaces. Progress in Fractional Differentiation and Applications, 2(3), 169-186.
  • [17] Yajima, T., Oiwa, S., & Yamasaki, K. (2018). Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas. Fractional Calculus and Applied Analysis, 21(6), 1493-1505.
  • [18] Lazopoulos, K.A. (2022). On ∧-fractional differential equations. Foundations, 2, 726-745.
  • [19] Farouki, R.T. (2008). Pythagorean-Hodograph Curves: Algebra and Geometry. Springer.
  • [20] Biard, L., Farouki, R.T., & Szafran, N. (2010). Construction of rational surface patches bounded by lines of curvature. Computer Aided Geometric Design, 27(5), 359-371.
  • [21] Farouki, R.T., Kim, S.H., & Moon, H.P. (2020). Construction of periodic adapted orthonormal frames on closed space curves. Computer Aided Geometric Design, 76, 101802.
  • [22] Farouki, R.T., Giannelli, C., Sampoli, M.L., & Sestini, A. (2014). Rotation-minimizing osculating frames. Computer Aided Geometric Design, 31(1), 27-42.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b96414bd-f088-463f-af51-541e948cff11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.