PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing a Compact Microstrip Antenna Using the Machine Learning Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents how machine learning techniques may be applied in the process of designing a compact dual-band H-shaped rectangular microstrip antenna (RMSA) operating in 0.75–2.20 GHz and 3.0–3.44 GHz frequency ranges. In the design process, the same dimensions of upper and lower notches are incorporated, with the centered position right in the middle. Notch length and width are verified for investigating the antenna. An artificial neural network (ANN) model is developed from the simulated dataset, and is used for shape prediction. The same dataset is used to create a mathematical model as well. The predicted outcome is compared and it is determined that the model relying on ANN offers better results.
Rocznik
Tom
Strony
44--52
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India
  • Department of Information and Communication Technology, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat 382007, India
Bibliografia
  • [1] M. Fallahpour and R. Zoughi, „Antenna miniaturization techniques: A review of topology- and material-based methods", IEEE Antenn. and Propag. Maga., vol. 60, no 1, pp. 38-50, 2018 (DOI: 10.1109/MAP.2017.2774138).
  • [2] P. L. Chi, R. Waterhouse, and T. Itoh, „Antenna miniaturization Rusing slow wave enhancement factor from loaded transmission Line models", IEEE Trans. on Antenn. and Propag., vol. 59, no. 1, pp. 48-57, 2011 (DOI: 10.1109/TAP.2010.2090452).
  • [3] A. Foudazi, H. R. Hassani, and S. M. Ali Nezhad, „Small UWB plan ar monopole antenna with added GPS/GSM/WLAN bands", IEEE Trans. on Antenn. and Propag., vol. 60, no. 6, pp. 2987-2992, 2012 (DOI: 10.1109/TAP.2012.2194632).
  • [4] V. K. Sambhe, R. N. Awale, and A. Wagh, „Compact U-shape radiating patch with rectangular ground planar monopole antenna", The J. of Engin., vol. 2015, no. 2, pp. 54-58, 2015 (DOI: 10.1049/joe.2014.0269).
  • [5] X. Ren, S. Gao, and Y. Yin, „Compact tri-band monopole antenna with hybrid strips for WLAN/WiMAX applications", Microw. And Opt. Technol. Lett., vol. 57, no. 1, pp. 94-99, 2015 (DOI: 10.1002/mop.28785).
  • [6] M.-T. Tan, B.-Z. Wang, and Z.-M. Zhang, „Compact tri-band dualpolarized planar monopole antenna with asymmetrical ground plane and loaded stub", Progr. in Electromag. Res. Lett., vol. 58, pp. 89-95 2016 (DOI: 10.2528/PIERL15122004).
  • [7] Y. Mao, S. Guo, and M. Chen, „Compact dual-band monopole antenna with defected ground plane for Internet of Things", IET Microw., Antenn. Propag., vol. 12, no. 8, pp. 1332-1338, 2018 (DOI: 10.1049/iet-map.2017.0860).
  • [8] R. O. Ouedraogo, E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, „Miniaturization of patch antennas using a metamaterialinspired technique", IEEE Trans. on Antenn. and Propag., vol. 60, no. 5, pp. 2175-2182, 2012 (DOI: 10.1109/TAP.2012.2189699).
  • [9] Y. Dong and T. Itoh, „Metamaterial-based antennas", Proceedings of the IEEE, vol. 100, no. 7, pp. 2271-2285, 2012 (DOI: 10.1109/JPROC.2012.2187631).
  • [10] A. Bazrkar, A. Gudarzi, and M. Mahzoon, „Miniaturization of rectangular patch antennas partially loaded with m-negative metamaterials", in Proc. Int. Conf. on Electron., Biomed. Engin. and its Appl. ICEBEA'2012, Dubai, United Arab Emirates, 2012, pp. 289-292 [Online]. Available: http://psrcentre.org/images/extraimages/58.%200112256.pdf
  • [11] F. Raval, Y. P. Kosta, J. Makwana, and A. V. Patel, „Design implementation of reduced size microstrip patch antenna with metamaterial defected ground plane", in Proc. of Int. Conf. on Commun. And Sig. Process., Melmaruvathur, India, 2013, pp. 186-190 (DOI: 10.1109/iccsp.2013.6577040).
  • [12] R. A. H. Mahdi and S. M. R. Taha, „Miniaturization of rectangular microstrip patch antenna using topology optimized metamaterial", IEICE Electron. Express, vol. 14, no. 19, 2017 (DOI: 10.1587/elex.14.20170787).
  • [13] V. G. Ajay and T. Mathew, „Size reduction of microstrip patch antenna through metamaterial approach for WiMAX application", In Proc. of Int. Conf. on Wirel. Commun., Sig. Process. and Network. WiSPNET 2217, Chennai, India, 2017, pp. 379-381 (DOI: 10.1109/WiSPNET.2017.8299782).
  • [14] J. Chatterjee, A. Mohan, and V. Dixit, „Broadband circularly polarized H-shaped patch antenna using reactive impedance surface", IEEE Antenn. and Wirel. Propag. Lett., vol. 17, no. 4, pp. 625-628, 2018 (DOI: 10.1109/LAWP.2018.2806993).
  • [15] B. Gupta, S. Nakhate, and M. Shandilya, „A compact wideband microstrip patch antenna with defected ground plane", in Proc. Of 4th World Congr. on Inform. and Commun. Technol. WICT 2014, Bandar Hilir, Malaysia, 2014, pp. 51-56 (DOI: 10.1109/WICT.2014.7077301).
  • [16] M. K. Khandelwal, B. K. Kanaujia, S. Dwari, S. Kumar, and A. Gautam, „Analysis and design of dual band compact stacked micro strip patch antenna with defected ground structure for WLAN/WiMAX applications", AEU - Int. J. of Electron. and Commun., vol. 69, no. 1, pp. 39-47, 2015 (DOI: 10.1016/j.aeue.2014.07.018).
  • [17] S. Veisee, S. Asadi, and M. Hedayati, „A novel compact defected ground structure and its application in mutual coupling reduction of a microstrip antenna", Turkish J. of Elec. Engin. and Comp. Sci., vol. 24, no. 5, pp. 3664-3670, 2016 (DOI: 10.3906/elk-1404-517).
  • [18] P. Anitha, A. S. R. Reddy, and M. N. G. Prasad, „Design of a compact y-shaped micro-strip patch antenna on modified Grodnu planes", in Proc. of Int. Conf. on Recent Adv. in Electron. and Commun. Technol. ICRAECT 2017, Bangalore, India, 2017, pp. 96-99 (DOI: 10.1109/ICRAECT.2017.60).
  • [19] C. Sharma and V. D. Kumar, „Koch fractalized compact spiral antenna based on Fibonacci sequence", in Proc. of IEEE 5th Asia-Pacific Conf. on Antenn. and Propag. APCAP 2016, Kaohsiung, Taiwan, 2016, pp. 157-158 (DOI: 10.1109/APCAP.2016.7843146).
  • [20] F. Wang, F. Bin, Q. Sun, J. Fan, and H. Ye, „A compact UHF antenna based on complementary fractal technique", IEEE Access, vol. 5, pp. 21118-21125, 2017 (DOI: 10.1109/ACCESS.2017.2756672).
  • [21] Y. K. Choukiker and J. C. Mudiganti, „Compact hybrid fractal antenna for wideband wireless applications", Int. J. of Microw. And Wirel. Technol., vol. 9, no. 5, pp. 1191-1196, 2017 (DOI: 10.1017/S1759078716001318).
  • [22] C. Deng, Y. Li, Z. Feng, W. Li, and D. Zhang, „A dual-band circularly-polarized stacked patch antenna with a small frequencyratio", in Proc. IEEE Antenn. and Propag. Soc. Int. Symp. (APSURSI 2013, Orlando, FL, USA, 2013, pp. 942-943 (DOI: 10.1109/APS.2013.6711130).
  • [23] A. Foroozesh, D. Psychoudakis, J. Homer, and I. Kim, „Compact wideband stacked microstrip patch antenna for a medical application", in 2016 IEEE Int. Symp. on Antenn. and Propag. APSURSI 2016, Fajardo, Puerto Rico, 2016, pp. 283-284 (DOI: 10.1109/APS.2016.7695850).
  • [24] A. Katyal and A. Basu, „Compact and broadband stacked micro strip patch antenna for target scanning applications", IEEE Antenn. And Wirel. Propag. Lett., vol. 16, pp. 381-384, 2017 (DOI: 10.1109/LAWP.2016.2578723).
  • [25] Y. Gou, S. Yang, Q. Zhu, and Z. Nie, „A compact dual-polarized double E-shaped patch antenna with high isolation", IEEE Trans. On Antenn. and Propag., vol. 61, no. 8, pp. 4349-4353, 2013 (DOI: 10.1109/TAP.2013.2262664).
  • [26] C. K. Hsu and S. J. Chung, „Compact antenna with U-shaped openend slot structure for multi-band handset applications", IEEE Trans. on Antenn. and Propag., vol. 62, no. 2, pp. 929-932, 2014 (DOI: 10.1109/TAP.2013.2289996).
  • [27] M. Tarbouch, A. E. Amri, and H. Terchoune, „Compact CPWfed microstrip octagonal patch antenna with h slot for WLAN and WiMAX applications", in Proc. of Int. Conf. on Wirel. Technol., Embedd. and Intell. Syst. WITS 2017, Fez, Morocco, 2017 (DOI: 10.1109/WITS.2017.7934638).
  • [28] A. Roy, S. Bhunia, D. C. Sarkar, and P. P. Sarkar, „Slot loaded compact microstrip patch antenna for dual band operation", Progress in Electromag. Res. C, vol. 73, pp. 145-156, 2017 (DOI: 10.2528/PIERC17020903).
  • [29] M. T. Islam, M. Samsuzzaman, and M. Z. Mahmud, „A compact slotted patch antenna for breast tumor detection", Microw. and Opt. Technol. Lett., vol. 60, no. 7, pp. 1600-1608, 2018 (DOI: 10.1002/mop.31215).
  • [30] Y. Li, Q. Liu, Y. Chen, C. Li, Z. Mo, and F. Li, „A compact triple wideband-notched UWB antenna", in Proc. Int. Worksh. on Antenna Technol. iWAT 2018, Nanjing, China, 2018 (DOI: 10.1109/IWAT.2018.8379142).
  • [31] B. Choudhury, S. Thomas, and R. M. Jha, „Implementation of soft computing optimization techniques in antenna engineering [Antenna applications corner]", IEEE Antenn. and Propag. Mag., vol. 57, no. 6, pp. 122-131, 2015 (DOI: 10.1109/MAP.2015.2439612).
  • [32] Z. Cai, S. Zeng, Y. Y. Li, and L. Kang, „Automated antenna design using normalized steady state genetic algorithm", in Proc. Of NASA/ESA Conf. on Adapt. Hardware and Syst., Noordwijk, Netherlands, 2008 (DOI: 10.1109/AHS.2008.26).
  • [33] S. Ledesma, J. Ruiz-Pinales, G. Cerda-Villafa~na, and M. G. Garcia-Hernandez, „A hybrid method to design wire antennas: Design and optimization of antennas using artificial intelligence", IEEE Antenn. and Propag. Mag., vol. 57, no. 4, pp. 23-31, 2015 (DOI: 10.1109/MAP.2015.2453912).
  • [34] L. Feruglio, „Artificial intelligence for small satellites mission autonomy", Doctoral Dissertation, Politecnico di Torino, 2017 (DOI: 10.6092/polito/porto/2694565).
  • [35] L. Y. Xiao, W. Shao, F. L. Jin, and B. Z. Wang, „Multiparameter modeling with ANN for antenna design", IEEE Trans. on Antenn. and Propag., vol. 66, no. 7, pp. 3718-3723, 2018 (DOI: 10.1109/TAP.2018.2823775).
  • [36] A. Landi, P. Piaggi, M. Laurino, and D. Menicucci, „Artificial neural networks for nonlinear regression and classification", in Proc. Of 10th In. Conf. on Intell. Syst. Design and Appl., Cairo, Egypt, 2010, pp. 115-120 (DOI: 10.1109/ISDA.2010.5687280).
  • [37] S. Lek et al., „Application of neural networks to modelling nonlinear relationships in ecology", Ecological Modell., vol. 90, no. 1, 1996, pp. 39-52 (DOI: 10.1016/0304-3800(95)00142-5).
  • [38] C. G. Christodoulou and A. Patnaik, „Neural networks for antennas", in Morden Antenna Handbook, C. A. Balanis, Ed. Wiley, 2008, pp. 1625-1657 (ISBN: 9780470036341).
  • [39] M. Kayri, „Predictive abilities of Bayesian regularization and Levenberg-Marquardt algorithms in artificial neural networks: A comparative empirical study on social data", Mathem. and Comput. Appl., vol. 21, no. 2, 2016 (DOI: 10.3390/mca21020020).
  • [40] V. S. Kushwah and G. S. Tomar, „Design and analysis of micro strip patch antennas using artificial neural network", in Trends in Research on Microstrip Antennas, S. Chattopadhyay, Ed. Rijeka: IntechOpen, 2017 (DOI: 10.5772/intechopen.69522).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b959be05-3348-4dad-a8f0-438b00978335
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.