PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method to determine solar-blind ultraviolet energy and electrical corona loss relation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solar-blind ultraviolet cameras as part of high-voltage electrical inspections until recently have mostly been used for pure observations. These observations only imply the presence of corona discharges and not the severity thereof. A radiometric algorithm together with a calibration algorithm to perform an optical energy measurement were presented earlier. This is a guide on how to apply the algorithm to determine the total optical measurement from corona discharges, plus additional processing. This guide and additions are used to compare the electrical and optical domains with actual examples. The main objective is to illustrate how to determine the electrical and optical relation for the IEC 60720 high-voltage electrical test configurations using a standard open procedure.
Rocznik
Strony
art. no. e143433
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Hatfield 0028, South Africa
  • Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Hatfield 0028, South Africa
autor
  • Department of Electrical and Information Engineering, University of Witwatersrand, Johannesburg, Wits 2050, South Africa
autor
  • Walmet Consultancy (Pty) Ltd, Powerville, Vereeniging 1939, South Africa
Bibliografia
  • [1] Gubanski, S., Dernfalk, A., Andersson, J. & Hillborg, H. Diagnostic methods for outdoor polymeric insulators. IEEE Trans. Dielectr. Electr. Insul. 14, 1065-1080 (2007). https://doi.org/10.1109/TDEI.2007.4339466
  • [2] Lindner, M., Elstein, S., Lindner, P., Topaz, J. M. & Phillips, A. J. Daylight Corona Discharge Imager. in 1999 Eleventh International Symposium on High Voltage Engineering 4, 340-352 (IEEE, 1999). https://doi.org/10.1049/cp:19990864
  • [3] Bass, M. et al. Handbook of optics, Volume II: Design, fabrication and testing, sources and detectors, radiometry and photometry, (McGraw-Hill, Inc., 2009).
  • [4] Coetzer, C. et al. Status Quo and Aspects to Consider with Ultraviolet Optical versus High Voltage Energy Relation Investigations. in Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (SPIE, 2019). https://doi.org/10.1117/12.2501251
  • [5] Coetzer, C. J. & West, N. Radiometric calibration and measurement algorithm for electrical inspection solar-blind ultraviolet cameras. Opto-Electron. Rev. 30, e140128 (2022). https://doi.org/10.24425/opelre.2022.140128
  • [6] Suhling, K., Airey, R. W. & Morgan, B. L. Optimisation of centroiding algorithms for photon event counting imaging. Nucl. Instrum. Methods Phys. Res. A. 437, 393-418 (1999). https://doi.org/10.1016/S0168-9002(99)00770-6
  • [7] Boksenberg, A., Coleman, C., Fordham, J. & Shortridge, K. Interpolative centroiding in CCD-based image photon counting systems. Adv. Electron. Electron. Phys. 64, 33-47 (1986). https://doi.org/10.1016/S0065-2539(08)61601-7
  • [8] Coetzer, C.,Vermrulen, H. J. & Herbst, B. M. Aspects that need to be considered for the calibration of ultraviolet solar-blind cameras used for electrical inspection. in International Conference Insulator News & Market Report (INMR) 273-301 (2013).
  • [9] Coetzer, C., Groenewald, S. & Leuschner, W. An analysis of the method for determining the lowest sensitivity of solarblind ultraviolet corona cameras. in 2020 International SAUPEC/Rob-Mech/PRASA Conference 1-6 (IEEE, 2020). https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9040997
  • [10] Fordham, J., Moorhead, C. & Galbraith, R. Dynamic-range limitations of intensified CCD photon-counting detectors. Mon. Not. R. Astron. Soc. 312, 83–88 (2000). https://doi.org/10.1046/j.1365-8711.2000.03155.x
  • [11] Bergamini, P. et al. Performance evaluation of a photon-counting intensified CCD. in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VIII 3114, 250-259 (SPIE, 1997). https://doi.org/10.1117/12.283773
  • [12] Chunyan, Z. et al. Study on application of ultra-violet instrument in external insulation detection of electric device. in 2008 International Conference on High Voltage Engineering and Application 391-393 (IEEE, 2008). https://doi.org/10.1109/ICHVE.2008.4773955
  • [13] Zhuansun, X. et al. The impact of negative DC corona discharge on the ultraviolet photon count in rod to plane air gaps. in 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) 362–365 (IEEE, 2015). https://doi.org/10.1109/CEIDP.2015.7352091
  • [14] Jang, J.-S. R. Fuzzy modeling using generalized neural networks and kalman filter algorithm. in AAAI 91, 762–767 (1991).
  • [15] Wang, S., Lv, F. & Liu, Y. Estimation of discharge magnitude of composite insulator surface corona discharge based on ultraviolet imaging method. IEEE Trans. Dielectr. Electr. Insul. 21, 1697-1704 (2014). https://doi.org/10.1109/TDEI.2014.004358
  • [16] Maistry, N., Schutz, R. A. & Cox, E. The quantification of corona discharges on high voltage electrical equipment in the UV spectrum using a corona camera. in 2018 International Conference on Diag-nostics in Electrical Engineering (Diagnostika) 1-4 (IEEE, 2018). https://doi.org/10.1109/DIAGNOSTIKA.2018.8526024
  • [17] Li, Z. et al. Effects of different factors on electrical equipment UV corona discharge detection. Energies 9, 369 (2016). https://doi.org/10.3390/en9050369
  • [18] Wyatt, C. Radiometric calibration: theory and methods. (Elsevier, 2012).
  • [19] Willers, C. J. Electro-Optical System Analysis and Design: a Radiometry Perspective. (SPIE Press, 2013). https://doi.org/10.1117/3.1001964
  • [20] Coetzer, C., Becker, T., West, N. & Leuschner, W. Investigating an alternate detector for solar-blind ultraviolet cameras for high-voltage inspection. in 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA) 1-6 (IEEE, 2021) . https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377216
  • [21] Pratt, W. Digital Image Processing Wiley-Interscience. (New York, 2007).
  • [22] Montgomery, D. C. & Runger, G. C. Applied Statistics and Probability for Engineers. (John Wiley and Sons, 2014).
  • [23] Sze, M. & Lahance, M. High Voltage test techniques-partial discharge measurements. in Guide for Partial Discharge Mesurement-son Medium Voltage (MV) and High Voltage Aparatus. (IEC, 2000).
  • [24] Kuffel, E. & Zaeungl, W. High Voltage Engineering Fundamentals (Pergamon Press, Oxford, 1984).
  • [25] Da Costa, E. G., Ferreira, T. V., Neri, M. G., Queiroz, I. B. & Germano, A. D. Characterization of polymeric insulators using thermal and UV imaging under laboratory conditions. IEEE Trans. Dielectr. Electr. Insul. 16, 985-992 (2009). https://doi.org/10.1109/TDEI.2009.5211844
  • [26] Pinnangudi, B., Gorur, R. & Kroese, A. Quantification of corona discharges on nonceramic insulators. IEEE Trans. Dielect. Electr. Insul. 12, 513-523 (2005). https://doi.org/10.1109/TDEI.2005.1453456
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b955206e-b246-4dfa-997a-cee258e1bb3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.