On Rational Functions Related to Algorithms for a Computation of Roots. II

Mirosław Baran

Faculty of Mathematics, Physics and Technical Science, Pedagogical University, Podchorażych 2, 30-084 Kraków, Poland

Article history:

Received 21 December 2019
Received in revised form
29 December 2019
Accepted 29 December 2019
Available online 31 December 2019

Abstract

We discuss a nice composition properties related to algorithms for computation of N -roots. Our approach gives direct proof that a version of Newton's iterative algorithm is of order 2. A basic tool used in this note are properties of rational function $\Phi(w, z)=\frac{z-w}{z+w}$, which was used earlier in [1] in the case of algorithms for computations of square roots.

Key words: Iterative methods, Newton methods, rational functions

1. A COMPOSITION PROPERTY.

Consider $\Phi(w, z)=\frac{z-w}{z+w}$ and

$$
R_{N}(w, z)=\frac{1}{N}\left((N-1) z+w^{N} / z^{N-1}\right)=\frac{1}{N z^{N-1}}\left((N-1) z^{N}+w^{N}\right), N \geq 2 .
$$

Proposition 1.1. If N is an even number then

$$
\Phi\left(w, R_{N}(w, z)\right)=\Phi(w, z)^{2} \frac{\Psi_{N}(w, z)}{\Psi_{N}(-w, z)}
$$

where

$$
\begin{aligned}
\Psi_{N}(w, z) & =(N-1) z^{N-2}+(N-2) z^{N-3} w+\cdots+w^{N-2} \\
& =\sum_{k=0}^{N-2}(N-1-k) z^{N-2-k} w^{k}, \quad N \geq 2,
\end{aligned}
$$

are homogeneous polynomials of degree $N-2$.
Proof. By the definition,

$$
\Phi\left(w, R_{N}(w, z)\right)=\frac{(N-1) z^{N}-N w z^{N-1}+w^{N}}{(N-1) z^{N}+N w z^{N-1}+w^{N}}=\frac{p_{w}(z)}{q_{w}(z)}
$$

with polynomials of degree N :
$p_{w}(z)=(N-1) z^{N}-N w z^{N-1}+w^{N}, q_{w}(z)=(N-1) z^{N}+N w z^{N-1}+w^{N}$.
We have $p_{w}(w)=p_{w}^{\prime}(w)=0$ and dividing $p_{w}(z)$ by $(z-w)^{2}$ we get $p_{w}(z)=$ $(z-w)^{2} \Psi_{N}(w, z)$. If now N is an even number then $q_{w}(z)=p_{-w}(z)$, which implies $q_{w}(z)=(z+w)^{2} \Psi_{N}(-w, z)$. The proof is finished.

2010 Mathematics Subject Classification. Primary 31C10 Secondary 32U35, 41A17.
Key words and phrases. Roots of polynomials, Newton algorithm, rational approximation.

[^0]Theorem 1.2. If $N \geq 1$ is an integer number then

$$
\Phi\left(w, R_{N}(w, z)\right)=h_{N}(\Phi(w, z))
$$

where

$$
\begin{equation*}
h_{N}(u)=\frac{(N-1)(1+u)^{N}-N(1-u)(1+u)^{N-1}+(1-u)^{N}}{(N-1)(1+u)^{N}+N(1-u)(1+u)^{N-1}+(1-u)^{N}}=u^{2} \frac{\eta_{N}(u)}{\chi_{N}(u)} \tag{1.1}
\end{equation*}
$$

where $\chi_{N}(u)=(N-1)(1+u)^{N}+N(1-u)(1+u)^{N-1}+(1-u)^{N}, \chi_{N}(0)=2 N$
and

$$
\begin{equation*}
\eta_{N}(u)=2 N \sum_{j=0}^{N-2}\binom{N-1}{j+1}\left(1-\frac{1}{j+2} \frac{1-(-1)^{j}}{2}\right) u^{j}, \eta_{N}(0)=2 N(N-1) \tag{1.2}
\end{equation*}
$$

If N is an even number then

$$
\Phi\left(w, R_{N}(w, z)\right)=h_{N}(\Phi(w, z)), \quad N \geq 2
$$

with

$$
h_{N}(u)=u^{2} \frac{\Psi_{N}(1-u, 1+u)}{\Psi_{N}(u-1,1+u)} .
$$

In particular $h_{2}(u)=u^{2}, h_{4}(u)=u^{2} \frac{u^{2}+2 u+3}{3 u^{2}+2 u+1}$ and $h_{3}(u)=u^{2} \frac{2 u+6}{3+3 u+3 u^{2}-u^{3}}$.
Proof. We can write
$\Phi\left(w, R_{N}(w, z)\right)=\frac{(N-1) z^{N}-N w z^{N-1}+w^{N}}{(N-1) z^{N}+N w z^{N-1}+w^{N}}=\frac{(w / z)^{N}-N(w / z)+N-1}{(w / z)^{N}+N(w / z)+N-1}$.
Now

$$
\Phi(w, z)=\frac{1-w / z}{1+w / z}=\frac{1-u}{1+u}=g(u)
$$

with $u=w / z$. Since $g^{-1}(u)=g(u)$ we get

$$
u=g(\Phi(w, z))=\frac{1-\Phi(w, z)}{1+\Phi(w, z)}
$$

and therefore $\Phi\left(w, R_{N}(w, z)\right)=$

$$
\begin{aligned}
& \frac{\left((1-\Phi(w, z) /(1+\Phi(w, z)))^{N}-N((1-\Phi(w, z) /(1+\Phi(w, z)))+N-1\right.}{\left((1-\Phi(w, z) /(1+\Phi(w, z)))^{N}+N((1-\Phi(w, z) /(1+\Phi(w, z)))+N-1\right.}= \\
& \frac{(N-1)(1+\Phi(w, z))^{N}-N(1-\Phi(w, z))(1+\Phi(w, z))^{N-1}+(1-\Phi(w, z))^{N}}{(N-1)(1+\Phi(w, z))^{N}+N(1-\Phi(w, z))(1+\Phi(w, z))^{N-1}+(1-\Phi(w, z))^{N}} \\
& =h_{N}(\Phi(w, z)), \text { where } h_{N}(u) \text { is given by }(1.1) .
\end{aligned}
$$

To see the second part, we apply Proposition 1

$$
\Phi\left(w, R_{N}(w, z)\right)=\Phi(w, z)^{2} \frac{\Psi_{N}(w, z)}{\Psi_{N}(-w, z)}=\Phi(w, z)^{2} \frac{\Psi_{N}(w / z, 1)}{\Psi_{N}(-w / z, 1)}
$$

$$
=\Phi(w, z)^{2} \frac{\Psi_{N}(g(\Phi(w, z)), 1)}{\Psi_{N}(-g(\Phi(w, z)), 1)}=\Phi(w, z)^{2} \frac{\Psi_{N}(1-\Phi(w, z), 1+\Phi(w, z))}{\Psi_{N}(\Phi(w, z)-1,1+\Phi(w, z))} .
$$

2. A Computation of N-Th roots.

Newton's algorithm for N-th root can be written as

$$
z_{N}[n+1]=\frac{1}{N}\left((N-1) z_{N}[n]+a / z_{N}[n]^{N-1}\right), z_{N}[0]=1, \quad N \geq 2
$$

It is well known that this is a special case of the recuurence $z[n+1]=$ $z[n]-f(z[n]) / f^{\prime}(z[n])$ with $f(z)=z^{N}-a$.

Now fix N and put $\zeta_{a}[N, n+1]=R_{N}\left(a^{1 / N}, \zeta_{a}[N, n]\right)$. Then $\lim _{n \rightarrow \infty} \zeta_{a}[N, n]=$ $a^{1 / N}$ and $\lim _{n \rightarrow \infty} \Phi\left(a^{1 / N}, \zeta_{a}[N, n]\right)=0$.

If $E(z, w)=z-w$ then $\Phi(z, w)=\frac{E(z, w)}{E(z, w)+2 w}$ and we can write

$$
\begin{align*}
& \frac{\left|\zeta_{a}[N, n+1]-a^{1 / N}\right|}{\zeta_{a}[N, n+1]+a^{1 / N}}=\left|h_{N}\left(\Phi\left(a^{1 / N}, \zeta_{a}[N, n]\right)\right)\right| \\
& \quad=\Phi\left(a^{1 / N}, \zeta_{a}[N, n]\right)^{2} \frac{\left|\eta_{N}\left(\Phi\left(a^{1 / N}, \zeta_{a}[N, n]\right)\right)\right|}{\left|\chi_{N}\left(\Phi\left(a^{1 / N}, \zeta_{a}[N, n]\right)\right)\right|} \tag{2.1}
\end{align*}
$$

Applying Theorem 1 and (2.1) we derive the following.
Theorem 2.1. Fix a positive a. Let the sequence $\zeta_{a}[n]$ be defined by

$$
\begin{equation*}
\zeta_{a}[N, n+1]=R_{N}\left(a^{1 / N}, \zeta_{a}[N, n]\right), \zeta_{a}[N, 0]=1 \tag{2.2}
\end{equation*}
$$

and put $\varepsilon_{a}[N, n]=\left|\zeta_{a}[N, n]-a^{1 / N}\right|$. Then

$$
\begin{equation*}
\gamma(N, a):=\lim _{n \rightarrow \infty} \frac{\varepsilon_{a}[N, n+1]}{\varepsilon_{a}[N, n]^{2}}=\frac{N-1}{2 a^{1 / N}} \tag{2.3}
\end{equation*}
$$

and $\gamma(N, a)<1$ if $a>((N-1) / 2)^{N}$. In particular $\gamma(2, a)<1$ for $a>1 / 4$ and $\gamma(3, a)<1$ in the case $a>1$.

Corollary 2.2. Let k be a positive integer. Then $\gamma\left(N k, a^{k}\right)=\left(k+\frac{k-1}{N-1}\right) \gamma(N, a)$, which implies that algorithm for computation $a^{1 / N}$ is asymptotically faster than algorithm for computation of $\left(a^{k}\right)^{1 / N k}$.

Example 2.3. Let us consider $a=2$ and $N=2, k=2$. We compare two sequences $\zeta_{2}[2, n]$ and $\zeta_{4}[4, n], \sqrt{2}=1.41421356237309504880168872 \ldots$

n	0	1	2	3	4
$\zeta_{2}[2, n]$	1	1.5	$\mathbf{1 . 4 1 6 6 6 6 6 6 6 6 6 6 6 6 7}$	$\mathbf{1 . 4 1 4 2 1 5 6 8 6 2 7 4 5 1}$	$\mathbf{1 . 4 1 4 2 1 3 5 6 2 3 7 4 6 9}$
$\zeta_{4}[4, n]$	1	1.75	$\mathbf{1 . 4 9 9 0 8 8 9 2 1 2 8 2 7 9 9}$	$\mathbf{1 . 4 2 1 1 5 3 5 4 2 2 7 5 3 8 6}$	$\mathbf{1 . 4 1 4 2 6 4 2 3 2 5 2 8 3 9 9}$

Acknowledgment. The author was partially supported by the National Science Centre, Poland, 2017/25/B/ST1/00906.

References

[1] M. Baran, On rational functions related to algorithms for a computation of roots. I, (2019), submited to STI.
[2] D. Braess, Nonlinear approximation theory, Springer Ser. Comput. Math. Springer, New York (1986).
[3] E.S. Gawlik, Zolotariev iterations for the matrix square root, SIAM J. Matrix Anal. Appl. 40 (2) (2019), 696-719.
[4] H. Rutishauser, Betrachtungen zur Quadratwurzeliteration, Monath. f. Math. 67 (1963) 452-464.
[5] J.F. Traub, Iterative Methods for the Solution of Equations, PrenticeHall, Englewood Cliffs, NJ (1983).
[6] A.K. Yeyios, On two sequences of algorithms for approximating square roots, J. of Comp. Appl. Math. 40 (1992), 63-72.

[^0]: *Corresponding author: miroslaw.baran@up.krakow.pl

