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This work presents an automated segmentation method, based on graph theory, which processes
superpixels that exhibit spatially similarities in hue and texture pixel groups, rather than individual
pixels. The graph shortest path includes a chain of neighboring superpixels which have minimal
intensity changes. This method reduces graphics computational complexity because it provides
large decreases in the number of vertices as the superpixel size increases. For the starting vertex
prediction, the boundary pixel in first column which is included in this starting vertex is predicted
by a trained deep neural network formulated as a regression task. By formulating the problem as
a regression scheme, the computational burden is decreased in comparison with classifying each
pixel in the entire image. This feasibility approach, when applied as a preliminary study in electron
microscopy and optical coherence tomography images, demonstrated high measures of accuracy:
0.9670 for the electron microscopy image and 0.9930 for vitreous/nerve-fiber and inner-segment/
outer-segment layer segmentations in the optical coherence tomography image. 
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1. Introduction

Image segmentation techniques have improved in conjunction with advances in imaging
modalities and have proved to be crucial in many applications, including semiconduc-
tors, medical imaging, object recognition, and traffic control [1, 2]. In the semiconductor
manufacturing process, for example, the layer delineation of a wafer is necessary when
defect inspections entail the measurement of layer thicknesses for comparison with de-
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signed structures. Here, imaging captures sample’s epitaxial layer structures with an elec-
tron microscope; the captured images are then analyzed to detect possible defects that
occur during fabrication [3]. Similar process is utilized in welding inspection of ma-
terials, normally visualized by ultrasonic or X-radiography images [4]. In medical im-
aging, the defect inspections are also applied to recognize the abnormalities appearing
in images of human organs. Such images are used to diagnose diseases using optical
coherence tomography (OCT) [5–7], to detect lung cancer using positron emission
tomography and computed tomography scans [8], and classify melanoma and benign
skin lesions in dermoscopic images [9, 10].

The offered benefits and range of major applications suited to image segmentation
secures the technique’s position in computer vision studies. In addition, fast develop-
ments in computer science make automated segmentation an excellent alternative to
manual segmentation, which is both laborious and time-consuming. The graph theoret-
ical method plays an important role in automated segmentation. Here, the method maps
image pixels to a graph and utilizes graph-based theoretical optimization tools to solve
the problem [11, 12]. 

This study proposes a graph-based segmentation method in which the graph-node
unit is represented by superpixels [13, 14] that capture spatially the similarity of pixel
groups rather than individual pixels, thus reducing graphics computations. Rather than
computing with a pixel count based on height × width, the method reduces the compu-
tational complexity by taking advantage of the disproportionate and dramatic decrease
in the number of vertices encountered with an increase in superpixel size. The calcu-
lated graph path portrays a continuous route with the same intensity. The effectiveness
of the proposed method is demonstrated by segmenting epitaxial layers in an electron
microscopy (EM) image and tissue layers in OCT image.

2. Methods

The method’s approach to segmentation is based on graph theory segmentation [12].
However, instead of calculating the graph using pixel intensities, the shortest path is ob-
tained by considering each so-called superpixel as a vertex in the graph. Here, pixels in
the same spatial region of the image are grouped into a single large superpixel [13, 14].
The segmentation workflow is illustrated schematically in Fig. 1. 

Fig. 1. Algorithm flowchart.
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After speckle noise is removed through preprocessing, the regions of interest (ROI)
of the images are extracted to save computational resources. Then, the ROI are parti-
tioned into superpixels. In epitaxial wafer EM image or retinal tissue OCT image, each
layer normally starts from a specific point in the image, and the intensity of the layer
remains invariant or slightly changes because of the noise. Therefore, finding the start-
ing superpixel that includes the starting point is urged to facilitate the graph path com-
putation. The starting pixel is predicted by a deep neural network (DNN) as described
in Section 2.1. The shortest path of corresponding layer is then calculated from the
starting superpixel by accumulatively searching for the path with minimum total
weight. The final layer boundary is obtained after postprocessing procedure.

2.1. First superpixel prediction

The first superpixel is defined by predicting the first pixel of the layer, which is included
in the first superpixel. Each layer’s first pixel can be distinguished clearly by the sudden
changes in intensity and detected by applying a DNN to compare the intensity of each
pixel vertically to the accumulated mean intensity of the previous pixels in the first
column. In [12], CHIU et al. utilized the graph search starting from the first pixel of the
images which can cause difficulty in defining the right layer. Hence, the path might go
to the wrong position in the image. In addition, in [15], we applied a DNN in a regres-
sion task to predict the retinal layer boundary pixels successfully. Therefore, we lev-
erage that characteristic and employ the first pixel prediction in this work to minimize
the difficulty in the graph theory to search for the boundary path. The first-pixel pre-
diction is formulated as a regression task in which the training input is the normalized
accumulated intensity (NAI) of each column as 

(1)

and the training output is the responding vertical coordinate of the marked pixel that
belongs to the boundary line.

Deep neural network (DNN) enjoys a wide use in medical applications such as com-
puter-aided diagnosis (CAD) as a classification task [10] or lesion detection as an object
recognition task [16, 17] or image segmentation for information interpretation in which
each pixel is classified into corresponding class [5]. In the CAD, detail information is
not provided to the user, which causes inconvenience in disease screening. On the con-
trary, the image segmentation provides more helpful details for clinicians. However,
classifying each pixel in the image with a deep learning system increases computa-
tional complexity that could be limited for almost regular computers. Hence, utilizing
the DNN in the regression task for predicting the pixel would leverage the information
source without a heavy learning system.

A conditional distribution of the output y, which would be a real-valued x variable,
is determined by the regression model as below [18]: 

p (t |x, w, b, β ) = ℕ(t | y (x, w, b), β –1) (2)

NAI Intensity-accumulate mean
Accumulated standard deviation

----------------------------------------------------------------------------------=
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in which an additive Gaussian noise is presented with zero mean and inverse variance β,
w, and b represents the regression parameters. Mean square error (MSE) loss function
is utilized to optimize the learning system with n training instances

(3)

Training input and output are extracted from 1024 columns of one training image
and one ground-truth image, respectively, for each type (EM image and OCT image).
Therefore, 1024 training instances exist for each type of image. NAIs of the first col-
umns in the testing images are calculated and fed to the trained network for predicting
the first pixel of each layer. The DNN for regression is presented in Fig. 2.

The network includes three 100-neurons fully connected (FC) layers with batch nor-
malization (BN) and a leakyReLU (lReLU) activation function. These FC convolution
layers are interleaved with three dropout layers having dropout probability 0.2, fol-
lowed by another 100-neurons FC layer with leakyReLU activation and finalized with
a one-neuron FC layer without activation function and a regression layer (Reg). Stochas-
tic gradient descent with momentum is used for training optimization; the number of
training epochs is set to 100. The whole segmentation process is executed in a Microsoft
Windows 10.0 64-bit, Intel Core i7-4790 3.6 GHz CPU 16.0 GB RAM PC using
MATLAB R2017a (The MathWorks, Inc., Natick, MA). We utilized the trained net-
work in [15] to predict the first pixel, which is simple for the regression task and is
predicted in real-time with approximately 0.001 second using the same computer, with-
out a complicated graphical processing unit (GPU). The training time for this network
is about 30 seconds without GPU, showing low computational burden. Further infor-
mation about computational complexity can be found in [15]. 

2.2. Graph shortest path calculation

In order to segment the layers separately, the image is partitioned into the superpixels
which have similar color and brightness. Each superpixel is represented as a vertex in
the graph. The graph is then cut at the path that has minimum total weight, that means
the intensity change is limited inside the path. Each pair of neighboring superpixels is
assigned a weight that accounts for changes in their average intensity so that the neigh-
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Fig. 2. Regression DNN for first-pixel boundary prediction from NAI. 
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boring superpixel pair with the smallest intensity change will be considered for addi-
tion to the path. The formula for calculating the graph weight is represented as

(4)

where  and  are the mean intensities of superpixels a and b, respectively, and
wmin = exp(–5) is small to avoid the route weight sum equaling zero. After this routine
updates the weights of all superpixels, the graph shortest path is calculated based on
the first superpixel of the executing layer. The shortest path of the graph is the one with
the minimum total weight. The minimum total weight indicates that the change of the
selected superpixels’ average intensity in the path is the smallest, where these super-
pixels are homogeneous in hue and texture.

The shortest path is determined by the minimum-weight-sum route initiated from
the predicted first superpixel. This prediction step is explained in next paragraph.
The graph path calculation is illustrated in Fig. 3, which departs from the superpixel
labeled 1. Direct pathways through the superpixels labeled 3, 5, and 6 do not exist;
thus w13, w15, w16 = ∞. The pathway through superpixel 4 has a greater weight than the
pathway through superpixel 2. Thus, w14 > w12, i.e., the change of intensities between
superpixels 1 and 4 is greater than that between superpixels 1 and 2, where w12 ~ wmin.
Hence, the final path in the illustration is the path traversing superpixels 1–2–3. The ob-
tained path is then post-processed with a vertical gradient calculation, thresholding, and
smoothing by iterative regression.

3. Results and discussion

A [3 × 3] median filter was implemented for preprocessing to remove speckle noise.
ROI extraction was performed. Then, simple linear-iterative clustering (SLIC) was
used for partitioning the superpixels. The SLIC superpixel algorithm further adapted

wab
Ia Ib– wmin+ , a b are neighboring superpixels

, a b are not connected
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Fig. 3. Illustration of graph-based superpixel-shortest-path calculation.
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k-means clustering more effectively when assembling the superpixels by considering the
pixels’ colors and their spatial regions within the target superpixel size [13]. The weight
was calculated for each superpixel as in Eq. (1). Then, the shortest path was calcu-
lated in the graph from the predicted first superpixels by the breadth-first-search al-
gorithm [19], which traversed through all possible routes in the graph to obtain the
least weight-sum path.

After the path was retrieved, the boundary pixels were excerpted in postprocessing
by thresholding their vertical gradients. The pixels that lay on the boundary had a greater
gradient because they reflected the intensity change between different layers in the im-
age. Then, the segmented boundary was smoothed by iterative regression, in which
the adjacent pixels were fitted by smoothing spline regression, iteratively. After re-
gression, the pixels that lay five pixel-units away either horizontally or vertically were
removed. Next, the resulting boundary was smoothed again with a smoothing spline.
The graph cut computation and postprocessing procedure are described in more details
as in the following pseudocode:

I ← Image 
SP ← Starting superpixel
wab ← Weights of all superpixel pairs in the graph
Path ← {SP}
% Calculate graph cut path
For all nodes in graph

While there are still nodes unvisited
Path{i} = argmin ∑wab; i ← added superpixels; a,b ⸦ graph nodes

End while
End for
% Iterative regression postprocessing
[~, G] = Gradient(I) % Vertical gradient of image
BoundG = Path◦G % Element wise multiplication
Bound ite = BoundG
For i = 1 : Iteration

Bound temp = Boundite 
For w = 1 : Image width

If Bound ite(w + 1) – Boundtemp(w) > 5
Remove Bound ite(w + 1)
Bound temp(w + 1) = Boundtemp(w)

End if 
End for 
Boundsmooth = Spline(Bound ite) % Smoothing spline regression
Bound ite = Boundsmooth 

End for

The algorithm was verified with an EM image of epitaxial layers which captured
the superimposed layers in a cross-sectional manner in the semiconductor materials.
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The segmented result of the semiconductor epitaxial-layer structure was compared with
the desired design for inspection purposes. The superpixel partition and the segmented
result are marked in Fig. 4a by solid white and red lines, respectively. In the EM image
of 809 × 1036 dimension, we partition it into 1500 superpixels, which means each super-
pixel has approximately 559 pixels, in average. The number of superpixels is a hyper
-parameter that is heuristically found to obtain good result for each image. In addition,
Fig. 4b shows the segmentation result for vitreous/nerve-fiber layer (NFL) and inner
-segment/outer-segment (IS/OS) layer boundaries; here, the superpixel partition and
final segmented layers appear in solid white and red lines, respectively. Differentiating
the IS/OS line plays a critical role in diagnosing epiretinal membranes, which cause poor
vision in patients [20]. The anonymous OCT image from Korea University Medical
Center is used as a retrospective and feasibility study. 469 × 1424 pixeled OCT image
is partitioned into 2000 superpixels to obtain good result. Therefore, about 334 pixels
per each superpixel are employed in this case. Further layer segmentation can be achieved
with developing a more time-efficient and accurate line tracking method for more com-
plexed shapes of EM cases and OCT retinal images.

The measures of accuracy for the automated and manually segmented EM and
OCT images are 0.9670 and 0.9930, respectively. Accuracy is defined as the ratio be-
tween similarly labeled pixels over the total number of pixels in the image. Indeed, the
accuracy of the OCT segmented result is high because this image has a larger number
of background pixels than does the EM image. However, the boundary lines are well
delineated in both cases, as Fig. 4 shows. The computational times for segmenting the
EM and OCT images are approximately 9 and 13 seconds, respectively. This computa-
tional time could be further reduced if the number of superpixels and their division pro-
cess could be effectively optimized. In addition, the proposed approach can outperform
in real-time using a GPU, given the training time for network in the current system
without a GPU that can already be as fast as 30 seconds. 

Fig. 4. Superpixel partition and boundary segmentation results (preliminary): (a) semiconductor epitaxial
EM image with segmented layers, (b) retinal-tissue OCT image with segmented layers.

a b
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4. Conclusions

In conclusions, a graph-theory-based automated segmentation method that processes
superpixels instead of direct individual pixels is proposed in this study. Performing
segmentation on the superpixel units reduces the computational burdens of the graph.
The calculated graph shortest path traverses through connecting superpixels which have
minimal intensity changes, which means these superpixels are homogeneous in hue and
texture. Here, there has been no need for data learning process with requesting test im-
ages. Instead, the starting pixel of the layer which is included in the starting superpixel
is predicted by a DNN regression scheme, where the complexity is less than classifying
each pixel in the entire image. As the validation for feasibility with preliminary results,
the segmentation delineates the boundary lines effectively in both EM and OCT images
with high accuracy: 0.9670 and 0.9930 for the EM image and the vitreous/NFL and
IS/OS layer segmentations in the OCT image, respectively. These segmented layers
provide crucial information during semiconductor fabrication inspections and epiretinal
membranes diagnosis in ophthalmological screening, respectively. Furthermore, the
same method could potentially be applied to other imaging modalities such as ultrasound,
computerized tomography (CT), and magnetic resonance imaging (MRI) as well.
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