PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Status of multi-wafer production MBE capabilities for extended SWIR III-V epi materials for IR detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The authors report two approaches, the first based on growth of lattice matched InGaAs/GaAsSb superlattice on InP substrate with tunable bandgap in the 2 to 3 μm range. The second approach is based on bulk random alloy InGaAsSb, which is tunable from 1.7 μm to 4.5 μm and lattice matched to the GaSb lattice constant. In each case, detector structures were fabricated and characterised. The authors have assessed the performance of these materials relative to commercially available extended short wave infrared devices through comparison to IGA-Rule 17 dark current performance level. A complementary barrier structure used in the InGaAsSb design showed improved quantum efficiency. The materials compare favourably to commercial technology and present additional options to address the challenging extended short wave infrared spectral band.
Słowa kluczowe
Rocznik
Strony
art. no. e144571
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
  • Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
autor
  • Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
  • Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
  • Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
  • Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
  • Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
  • Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
Bibliografia
  • [1] Jain, M. et al. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems. Proc. SPIE 9073, 18-25 (2014). https://doi.org/10.1117/12.2054328
  • [2] Kim, M. S. et al. Visible to SWIR hyperspectral imaging for produce safety and quality evaluation. Sens. Instrum. Food Qual. Saf. 5, 155-164 (2011). https://doi.org/10.1007/s11694-012-9122-3
  • [3] Shaikh, M. S., Jaferzadeh, K. & Thörnberg, B. Extending effective dynamic range of hyperspectral line cameras for short wave infrared imaging. Sensors 22, 1817 (2022). https://doi.org/10.3390/s22051817
  • [4] Wooten, M. Superluminescent Diodes at 2.4 Microns from GaInAsSb/AlGaAsSb Quantum Well Heterostructures for Optical Glucose Sensing. (The University of Iowa, 2013).
  • [5] Martyniuk, P., Antoszewski, J., Martyniuk, M., Faraone, L. & Rogalski, A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 1, 041102 (2014). https://doi.org/10.1063/1.4896193
  • [6] Ji, X. et al. Deep-level traps induced dark currents in extended wavelength InxGa1−xAs/InP photodetector. J. Appl. Phys. 114, 224502 (2013). https://doi.org/10.1063/1.4838041
  • [7] Dehzangi, A. et al. Type-II superlattices base visible/extended short-wavelength infrared photodetectors with a bandstructure-engineered photo-generated carrier extractor. Sci. Rep. 9, 503 (2019). https://doi.org/10.1038/s41598-019-41494-6
  • [8] Uliel, Y. et al. Type-II superlattice based photodiodes for short wave infrared detection. Infrared Phys. Technol. 84, 63-71 (2017). https://doi.org/10.1016/j.infrared.2017.02.003
  • [9] Craig, A. P. et al. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb. Appl. Phys. Lett. 106, 201103 (2015). https://doi.org/10.1063/1.4921468
  • [10] Lumb, M. P. et al. Drift-diffusion modeling of InP-based triple junction solar cells. Proc. SPIE 8620, 86201G (2013). https://doi.org/10.1117/12.2005332
  • [11] Zhang, Y. G. et al. IGA-rule 17 for performance estimation of wavelength-extended InGaAs photodetectors: validity and limitations. Appl. Opt. 57, D141-D144 (2018). https://doi.org/10.1364/AO.57.00D141
  • [12] Ting, D. Z. et al. Long wavelength InAs/InAsSb superlattice barrier infrared detectors with p-type absorber quantum efficiency enhancement. Appl. Phys. Lett. 118, 133503 (2021). https://doi.org/10.1063/5.0047937
  • [13] Ting, D. Z. Development of type-II superlattice long wavelength infrared focal plane arrays for land imaging. Infrared Phys. Technol. 123, 10413 (2022). https://doi.org/10.1016/j.infrared.2022.104133
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b94b60c9-2109-48a4-90df-cf87db068bee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.