Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ashes were prepared by annealing selected types of solid fuels (biomass: corn cobs, sunflower husks, olive pomace, hay pellets and rice husks; coal: lignite and bituminous; and alternative fuel: paper sludge) at different temperatures (550°C, 815°C and 975°C). Based on X-ray fluorescence spectra, the slagging/fouling indexes were used to study the effects of the type of ash and the ashing temperature on the ash fouling and slagging properties. Slagging indexes were compared with the ash fusion temperatures. Ash fusion temperatures were measured by a LECO AF-700. The lowest deformation temperature (below 1000°C) was seen for the ashes prepared from hay pellets and corn cobs. On the other hand, the deformation temperature exceeded 1500°C for ashes prepared from paper sludge, sunflower husks and rice husks. By calculating the different slagging/fouling indexes, all the ashes exhibited slagging/fouling problems of varying degrees.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
43--51
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
autor
- VŠB Technical University of Ostrava Energy Research Center, 17. listopadu 2172/15, 708 00 Ostrava - Poruba, Czech Republic
Bibliografia
- 1. Romero, E., Quirantes, M. & Nogales, R. (2017). Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel. 208, 1–9. DOI: doi.org/10.1016/j.fuel.2017.06.133.
- 2. Niu, Y., Tan, H., Wang, X., Liu, Z., Liu, H., Liu, Y. & Xu, T. (2010). Study on fusion characteristics of biomass ash. Bioresource Technol. 101 (23), 9373–9381. DOI: doi.org/10.1016/j.biortech.2010.06.144.
- 3. Fang, X., Jia, L., Wang, F. & Yu, G. (2012). Experimental study on ash fusion characteristics of biomass. Bio-resource Technol. 104(1), 769–774. DOI: doi.org/10.1016/j.biortech.2011.11.055.
- 4. Xiao, R., Xueli, C., Fuchen, W. & Guangsuo, Y. (2011). The physicochemical properties of different biomass ashes at different ashing temperature. Renew. Energ. 36(1), 244–249. DOI: doi.org/10.1016/j.renene.2010.06.027.
- 5. Malaťák, J. & Vaculík, P. (2008). Biomasa pro výrobu energie. Praha, Česká zemědělská univerzita v Praze. ISBN 978-80-213-1810-6.
- 6. Holubcik, M. & Jandacka, J. (2014). Mathematical model for prediction of biomass ash melting temperature using additives. Komunikacie. 16 (3A), 48–53. ISSN:1335-4205.
- 7. Garcia-Maraver, A., Mata-Sanchez, J., Carpio, M. & Perez-Jimenez, J.A. (2017). Critical review of predictive coefficients for biomass ash deposition tendency. J. Energy Inst. 90, 214–228. DOI: doi.org/10.1016/j.joei.2016.02.002.
- 8. Vamvuka, D. & Kakaras, E. (2011). Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Process Technol. 92, 570–581. DOI: doi.org/10.1016/j.fuproc.2010.11.013.
- 9. Pronobis, M., Kalisz, S. & Polok, M. (2013). The impact of coal characteristics on the fouling of stoker-fired boiler convection surfaces. Fuel. 112, 473–482. DOI: doi.org/10.1016/j.fuel.2013.05.044.
- 10. Yao, X., Xu, K., Yan, F. & Yu, L. (2017). The influence of ashing temperature on ash fouling and slagging characteristics during combustion of biomass fuels. Bioresources. 12(1), 1593–1610.
- 11. Du, S., Yang, H., Qian, K., Wang, X. & Chen, H. (2014). Fusion and transformation properties of the inorganic components in biomass ashes. Fuel. 117, 1281–1287. DOI: doi.org/10.1016/j.fuel.2013.07.085.
- 12. Fernandes, I.J., Calheiro, D., Kieling, A.G., Moraes, C.A-.M., Rocha, T.L.A.C., Brehm, F.A. & Modolo, R.C.E. (2016). Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel. 165, 351–359. DOI: doi.org/10.1016/j.fuel.2015.10.086.
- 13. Li, W., Li, Q., Zhang, Y. & Meng, A. (2012). Ashing temperaturés impact on the characteristics of biomass ash. Appl. Mech. Mater. 260–261, 217–223. DOI: doi.org/10.4028/www.scientific.net/AMM.260-261.217.
- 14. Yao, X., Xu, K. & Li, Y. (2017). Experimental investigation of performance properties and agglomeration behavior of fly ash from gasification of corncobs. J. Cent. South. Univ. 24, 496–505. DOI: doi.org/10.1007/s11771-017-3452-6.
- 15. Yao, X., Xu, K. & Yan, F. (2016). Comparative study of characterization and utilization of corncob ashes from gasification process and combustion process. Constr. Build. Mater. 119, 215–222. DOI: doi.org/10.1016/j.conbuildmat.2016.04.077.
- 16. Rizvi, T., Xing, P., Pourkashanian, M., Darvell, L.I., Jones, J.M. & Nimmo, W. (2015). Prediction of biomass ash fusion behaviour by the use of detailed characterisation methods coupled with thermodynamic analysis. Fuel. 141, 275–284. DOI: doi.org/10.1016/j.fuel.2014.10.021.
- 17. Suárez-García, F., Martínez-Alonso, A., Llorente, F.M. & Tascón, J.M.D. (2002). Inorganic matter characterization in vegetable biomass feedstocks. Fuel. 81, 1161–1169. DOI: doi.org/10.1016/S0016-2361(02)00026-1.
- 18. International Organization for Standardization. (2016). Solid biofuels – Determination of ash content. ISO 18122:2015.
- 19. International Organization for Standardization. (2010). Solid mineral fuels – Determination of ash. ISO 1171:2010.
- 20. Česká technická norma (2013). Method of testing cement – Part 2: Chemical analysis of cement. ČSN EN 196-2:2013.
- 21. žProg. Energy Combust. Sci. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. 52, 1–61. DOI: doi.org/10.1016/j.pecs.2015.09.003.
- 22. International Organization for Standardization. (2008). Hard coal and coke – Determination of ash fusibility. ISO 540:2008.
- 23. European Committee for Standardization. (2007). Solid biofuels – Method for the determination of ash melting behavior – Part 1: Characteristic temperatures method. CEN/TS 15370-1.
- 24. Vassilev, S.V., Vassileva, C.G., Song, Y.C., Li, W.Y. & Feng, J. (2017). Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel. 208, 377–409. DOI: doi.org/10.1016/j.fuel.2017.07.036.
- 25. Liu, B., He, Q., Jiang, Z., Xu, R. & Hu, B. (2013). Relationship between coal ash composition and ash fusion temperatures. Fuel. 105, 293–300. DOI: doi.org/10.1016/j.fuel.2012.06.046.
- 26. Magdziarz, A., Dalai, A.K. & Kozinski, J.A. (2016). Chemical composition, character and reactivity of renewable fuel ashes. Fuel. 176, 135–145. DOI: doi.org/10.1016/j.fuel.2016.02.069.
- 27. Reinmoller, M., Schreiner, M., Guhl, S., Neuroth, M. & Meyer, B. (2017). Formation and transformation of mineral phases in various fuels studied by different ashing methods. Fuel. 202, 641–649.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b94586e9-5624-4b6e-bf4f-395a0dc9061a