PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ag₈SnSe₆ argyrodite synthesis and optical properties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ag₈SnSe₆ argyrodite compound was synthesized by the direct melting of the elementary Ag, Sn and Se high purity grade stoichiometric mixture in a sealed silica ampoule. The prepared polycrystalline material was characterized by the X-ray diffraction (XRD), visible (VIS) and near-infrared (NIR) reflection and photoluminescence (PL) spectroscopy. XRD showed that the Ag₈SnSe₆ crystallizes in orthorhombic structure, Pmn2₁ space group with lattice parameters: ɑ = 7.89052(6) Ǻ, b = 7.78976(6) Ǻ, c = 11.02717(8) Ǻ. Photo-luminescence spectra of the Ag₈SnSe₆ polycrystalline wafer show two bands at 1675 nm and 1460 nm. Absorption edge position estimated from optical reflectance spectra is located in the 14131540 nm wavelength range.
Twórcy
autor
  • Lviv Polytechnic National University, Physics Department, S. Bandera 12, 79013 Lviv, Ukraine
autor
  • Lviv Polytechnic National University, Physics Department, S. Bandera 12, 79013 Lviv, Ukraine
autor
  • Warsaw University of Technology, Faculty of Physics, Semiconductor Division, Koszykowa 75, 00-662 Warszawa, Poland
autor
  • Lviv Polytechnic National University, Physics Department, S. Bandera 12, 79013 Lviv, Ukraine
Bibliografia
  • [1] M. Lundstrom, Moore’s law forever? Science 299 (5604) (2003) 210-211.
  • [2] Nanoelectronics and Information Technology, in: R. Waser (Ed.), Wiley-VCH, Weinheim, 2003.
  • [3] M.-J. Lee, C. B. Lee, D. Lee, S.R. Lee, M. Chang, J. H. Hui, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nat. Mater. 10 (2011) 625-630.
  • [4] R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21 (2009) 2632-2663.
  • [5] M. N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes, IEEE Trans. Nanotechnol. 4 (2005) 331-338.
  • [6] X. Zhang, C.-L. Zhang, S. Lin, H. Lu, Y. Pei, S. Jia, Thermoelectric properties of n-type Nb-doped Ag8SnSe6, J. Appl. Phys. 119 (2016) 135101-1-135101-6.
  • [7] L. Li, Y. Liu, J. Dai, A. Hong, M. Zeng, Z. Yan, J. Xu, D. Zhang, D. Shan, S. Liu, Z. Ren, J.-M. Liu, High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C 4 (2016) 5806-5813.
  • [8] W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, Y. Pei, Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6, Adv. Sci. 3 (11) (2016), 1600196-1-1600196-7.
  • [9] W. F. Kuhs, R. Nitsche, K. Schuenemann, The argyrodites - a new family of the tetrahedrally close-packed srtuctures, Mater. Res. Bull. 14 (1979) 241-248.
  • [10] M. V. Chekaylo, V. O. Ukrainets, G. A. Il’chuk, Yu. P. Pavlovsky, N. A. Ukrainets, Differential thermal analysis of Ag-Ge-Se, Ge-Se charge materials in the process of their heating and Ag8GeSe6, GeSe2 compound synthesis, J. Non-Cryst. Solids 358 (2012) 321-327.
  • [11] M. V. Moroz, M. V. Prokhorenko, Measurement of the thermodynamic properties of saturated solid solutions of compounds in the Ag-Sn-Se system by the EMF method, Russ. J. Phys. Chem. A 89 (2015) 1325-1329.
  • [12] S. M. Bagheri, S. Z. Imamaliyeva, L. F. Mashadiyeva, M. B. Babanly, Phase equilibria in the Ag8SnS6–Ag8SnSe6 system, Int. J. Adv. Sci. Tech. Res. 4 (2) (2014) 291-296.
  • [13] S. K. Kovach, A. P. Kokhan, Yu. V. Voroshilov, Electrochemical behavior and Ag8GeS6, Ag8GeSe6, Ukr. Khim. Zh. 59 (1993) 395–398 (in Russian).
  • [14] I. S. Osipishin, N. I. Bursko, B. I. Gasii, I. D. Zhezhrich, Sov. Phys. Semicond. 6 (1972) 974 (transl. from Fiz. Tekh. Poluprov 6 (1972) 1121-1123).
  • [15] S. N. Starostenko, Deposited Doc, VINITI 3167 (1981) 288–291 (in Russian).
  • [16] O. Gorochov, Les composes Ag8MX6 (M = Si, Ge, Sn and X = S, Se, Te), Bull. Soc. Chim. Fr. 6 (1968) 2263-2275.
  • [17] A. K. Ivanov-Shits, I. V. Murin, Solid State Ionics, vol. 1, Saint-Petersburg University Publ., Saint-Petersburg, 2000.
  • [18] S. Hull, P. Berastegui, A. Grippa, Ag+ diffusion within the rock-salt structured superionic conductor Ag4Sn3S8, J. Phys.: Condens. Matter 17 (2005) 1067-1084.
  • [19] L. D. Gulay, I. D. Oleksceyk, O. V. Parrasyuk, Crystal structure of β-Ag8SnSe6, J. Alloys Compd. 339 (2002) 113-117.
  • [20] R. Bendorius, A. Iržikevičius, A. Kindurys, E. V. Tsvetkova, The absorption spectra of Ag8MIVSe6 and Ag8GeXVI6 compounds, Phys. Stat. Sol. (a) 28 (1975) K125-K127.
  • [21] A. Kindurys, A. Shileika, Investigation of the absorption edge of the compounds at phase trancitions, Inst. Phys. Conf. Ser. 35 (1977) 67-72.
  • [22] I. V. Semkiv, B. A. Lukiyanets, H. A. Ilchuk, R. Yu. Petrus, A. I. Kashuba, M. V. Chekaylo, Energy structure of βi-phase of Ag8SnSe6 crystal, J. Nano-Electron. Phys. 8 (1) (2016), 01011-1-01011-5.
  • [23] S. V. Syrotyuk, I. V. Semkiv, H. A. Ilchuk, V. M. Shved, Condens. Matter Phys. 19 (4) (2016), 43703-1-43703-6.
  • [24] I. V. Semkiv, H. A. Ilchuk, A. I. Kashuba, R. Yu. Petrus, V. V. Kusnezh, Lattice dynamic of Ag8SnSe6 crystal, J. Nano-Electron. Phys. 8 (3) (2016), 03006-1-03006-6.
  • [25] Z. M. Aliyeva, S. M. Bagheri, Z. S. Aliev, I. J. Alverdiyev, Y. A. Yusibov, M. B. Babanly, The phase equilibria in the Ag2S–Ag8GeS6-Ag8SnS6 system, J. Alloys Compd. 611 (2014) 395-400.
  • [26] http://www.ill.eu/sites/fullprof/.
  • [27] M. Pawlowski, P. Zabierowski, R. Bacewicz, H. Marko, N. Barreau, Photoluminescence as a tool for investigations of the junction region in Cu(In,Ga)Se2-based solar cells, Thin Solid Films 519 (2011) 7328-7331.
  • [28] D. Carre, R. Ollitrault-Fichet, Structure de Ag8GeSe6β, J. Flahaut. Acta Crystallogr. B 36 (1980) 245-249.
  • [29] J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, New Jersey, 1971.
  • [30] T. Schmidt, K. Lischka, W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors, Phys. Rev. B 45 (1992) 8989-8994.
  • [31] O. Madelung, Semiconductors: Data Handbook, Springer Science & Business Media, Berlin, 2012.
  • [32] Susanne Siebentritt, Wide-gap Chalcopyrites, vol. 1, Springer, Berlin, 2006.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b93d43a4-5b2d-48b2-b90a-a723da17edf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.