Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The restrictions on carbon dioxide emissions introduced by the European Union encourage experimental work on new-generation materials containing smaller amounts of clinker. At present, silica fly ashes from the combustion of hard coal are widely used in the technology of cement and concrete in Europe and Poland. This research aims to assess the physical and chemical properties of fly ashes from the thermal treatment of sewage sludge for use in concrete technology in relation to applicable standards and determine their impact on the natural environment. The established concentrations of heavy metals are below the maximum values required when discharging sewage into the ground or waters and also meet the necessary leaching limits when inert waste is allowed to be landfilled and on substances particularly harmful to the aquatic environment. On this basis, it was found that the migration of heavy metals from concrete with the addition of ashes to the water environment is insignificant and should not be a major problem. In addition, the tests showed that the activity index did not exceed the limit value.
Rocznik
Tom
Strony
65--72
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Warsaw University of Life Sciences, Institute of Civil Engineering 166 Nowoursynowska St., 02-787 Warszawa, Poland
autor
- Warsaw University of Life Sciences, Institute of Civil Engineering 166 Nowoursynowska St., 02-787 Warszawa, Poland
autor
- Warsaw University of Life Sciences, Institute of Civil Engineering 166 Nowoursynowska St., 02-787 Warszawa, Poland
Bibliografia
- 1. Ahmad, F. (2007) Natural radioactivity levels in building materials used in Egypt. Radiation Effects and Defects in Solids 162 (1), pp. 43‒52, doi: 10.1080/10420150600968246.
- 2. Ajdukiewicz, A. (2011) Aspects of durability and impact on environment in design of concrete structures. Przegląd Budowlany 2, pp. 20‒29 (in Polish).
- 3. ASTM C379-65T. Specification for fly ash for use as a pozzolanic material with lime
- 4. ASTM C618-03. Standard specification for coal fly ash and raw or calcined natural pozzolan use in concrete.
- 5. Barbosa, R., Lapa, N., Boavida, D., Lopes, H., Gulyurtlu, I. & Mendes, B. (2009) Co-combustion of coal and sewage sludge: Chemical and ecotoxicological properties of ashes. Journal of Hazardous. Materials 170, pp. 902‒909, doi: 10.1016/j.jhazmat.2009.05.053.
- 6. Białowiec, A., Janczukowicz, W. & Krzemieniewski, M. (2009) Possibilities of management of waste fly ashes from sewage sludge thermal treatment in the aspect of legal regulations. Rocznik Ochrona Środowiska 11, pp. 959‒971.
- 7. Borowski, G., Gajewski, M. & Haustein, E. (2014) Possibilities of ashes utilization from sewage sludge thermal processing in a fluidized bed boiler. Engineering and Protection of Environment 17 (3), pp. 393‒402 (in Polish).
- 8. Bou-Rabee, F. & Bem, H. (1996) Natural radioactivity in building materials utilized in the State of Kuwait. Journal of Radioanalytical and Nuclear Chemistry 213 (2), pp. 143‒149, doi: 10.1007/BF02165246.
- 9. Chen, M., Blanc, D., Gautier, M., Mehu, J. & Gourdon, R. (2013) Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction. Waste Management 33 (5), pp. 1268‒1275, doi: 10.1016/j.wasman.2013.01.004.
- 10. Council of Ministers (2020) Regulation of the Council of Ministers of 17 December 2020 on building materials for which the radioactive concentration of radioactive isotopes of potassium K-40, radium Ra-226 and thorium Th-232 is determined.
- 11. EN 12457-2:2006. Waste characterization ‒ Leaching ‒ Compliance test for leaching of granular waste materials and sludges ‒ Part 2: One-stage batch test at a liquid to solid ratio of 10 l/kg for materials with a particle size of less than 4 mm (with or without reduction size reduction).
- 12. EN 450-1:2012. Fly ash for concrete. Part 1: Definitions, specifications and compliance criteria.
- 13. Eštaková, A. & Palaščaková, L. (2013) Assessment of natural radioactivity levels of cements and cement composites in the Slovak Republic. International Journal of Environmental Research and Public Health 10 (12), pp. 7165‒7179, doi: 10.3390/ijerph10127165.
- 14. Faheem, M., Mujahid, S.A. & Matiullah, M. (2008) Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province ‒ Pakistan. Radiation Measurements 43 (8), pp. 1443‒1447, doi: 10.1016/j.radmeas.2008.02.014.
- 15. Giergiczny, Z. & Król, A. (2008) Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. Journal of Hazardous Materials 160 (2‒3), pp. 247‒255, doi: 10.1016/j. jhazmat.2008.03.007.
- 16. Gil, D.M. & Golewski, G.L. (2019) Natural radioactivity of concrete with concentrated silica fume (SF) and siliceous fly ash (FA) addition. Acta Scientiarum Polonorum. Architectura 18 (1), pp. 59‒67, (in Polish), doi: 10.22630/ ASPA.2019.18.1.7
- 17. Hudziak, G., Gorazda, K. & Wzorek, Z. (2012) Main directions in application of ash after thermal treatment of sewage sludge. Technical Transactions, Chemistry 109 (16), pp. 41‒50, (in Polish).
- 18. Journal of Laws (2015) Regulation of the Minister of Economy of 16 July 2015 on the admission of waste to landfill (Journal of Laws of 2015, item 1277).
- 19. Journal of Laws (2016) Regulation of the Minister of Development of 21 January 2016 on the requirements for conducting the process of thermal treatment of waste and methods of dealing with waste resulting from this process. (Journal of Law 2016, item 108).
- 20. Kępys, W., Pomykała, R. & Pietrzyk, J. (2013) Properties of fly ash from thermal conversion of municipal sewage sludge. Inżynieria Mineralna, Journal of the Polish Mineral Engineering Society 14 (1), pp. 11‒18.
- 21. Kolapo Ademola, A., Abodunrin, O.P., Fatai, M.A. & Omoboyede, J.O. (2017) Assessment of natural radioactivity levels in cement samples commonly used for construction in Lagos and Ogun State, Nigeria. Elixir Nuclear and Radiation Physics 102, pp. 44416‒44420.
- 22. Lin, K.L. & Lin, C.Y. (2005) Hydration characteristics of waste sludge ash utilized as raw cement material. Cement and Concrete Research 35 (10), pp. 1999‒2007, doi: 10.1016/j.cemconres.2005.06.008.
- 23. Lin, D.F., Luo, H.L. & Sheen, Y.N. (2005) Glazed tiles manufactured from incinerated sewage sludge ash and clay. Journal of the Air & Waste Management Association 55 (2), pp. 163‒172, doi: 10.1080/10473289.2005.10464614.
- 24. Michalik, B. (2006) Natural radioactivity in hard coal and solid products of its combustion. Karbo 1, pp. 3‒12.
- 25. Monzó, J., Payá, J., Borrachero, M.V. & Girbés, I. (2003) Reuse of sewage sludge ashes (SSA) in cement mixtures: The effect of SSA on the workability of cement mortars. Waste Management 23 (4), pp. 373‒381, doi: 10.1016/ S0956-053X(03)00034-5.
- 26. Monzo, J., Payá, J., Borrachero, M.V. & Peris-Mora, E. (1999) Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cement and Concrete Research 29 (1), pp. 87‒94, doi: 10.1016/S0008-8846(98)00177-X.
- 27. Msaki, P. & Banzi, F.P. (2000) Radioactivity in products derived from gypsum in Tanzania. Radiation Protection Dosimetry 91 (4), pp. 409‒412, doi: 10.1093/oxfordjournals. rpd.a033251
- 28. Nocuń-Wczelik, W. (2002) Concrete as environmentally friendly material. In: Kijowski, P. Deja, J. & Środa, B. (eds) Dni Betonu: tradycja i nowoczesność. Scientific and Technical Conference of the Days of Concrete, Szczyrk, 8‒10 Oct 2002, Association of Cement Producers, Vistula, pp. 457‒464 (in Polish).
- 29. Olkuski, T. (2008) The content of uranium and thorium in Polish and American coals. Polityka Energetyczna 11 (1), pp. 323‒334 (in Polish).
- 30. Rutkowska, G., Wichowski, P., Fronczyk, J., Franus, M. & Chalecki, M. (2018) Use of fly ashes from municipal sewage sludge combustion in production of ash concretes. Construction and Building Materials 188, pp. 874‒883, doi: 10.1016/j.conbuildmat.2018.08.167.
- 31. Sakr, K. & El-Hakim, E. (2005) Effect of high temperature or fire on heavy weight concrete properties. Cement and Concrete Research 35 (3), pp. 590‒596, doi: 10.1016/j. cemconres.2004.05.023.
- 32. UNSCEAR (2000) Sources and effects of ionizing radiation. Report to the General Assembly of the United Nations with Scientific Annexes, United Nations sales publication E.00. IX.3, New York.
- 33. Wichowski, P., Rutkowska, G. & Nowak, P. (2017) Leaching of selected heavy metals from concretes containing fly ash from thermal treatment of sewage sludge. Acta Scientiarum Polonarum. Architectura 16 (1), pp. 43‒51 (in Polish), doi: 10.22630/ASPA.2017.16.1.05.
- 34. Yang, Y.X., Wu, X.M. & Jiang, Z.Y. (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Applied Radiation and Isotopes 63 (2), pp. 255‒259, doi: 10.1016/j.apradiso.2005.02.011.
- 35. Yu, Q., Nagataki, S., Lin, J., Saeki, T. & Hisada, M. (2005) The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash. Cement and Concrete Research 35 (6), pp. 1056‒1063, doi: 10.1016/j.cemconres.2004.03.031.
- 36. Yusuf, R.O., Noor, Z.Z., Din, M.D.F.M.D. & Abba, A.H. (2012) Use of sewage sludge ash (SSA) in the production of cement and concrete-a review. International Journal of Global Environmental Issues 12 (2), pp. 214‒228, doi: 10.1504/IJGENVI.2012.049382.
- 37. Zakrzewski, T. (2005) Natural radioactivity in construction. Gliwice: Silesian University of Technology.
- 38. Zapotoczna-Sytek, G., Mamont-Cieśla, K. & Rybarczyk, T. (2012) Natural radioactivity of construction products, including autoclaved aerated concrete (ABK). Przegląd Budowlany 7‒8, pp. 39‒42 (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b938ad13-3c67-4b5b-91a0-6a297ef7854c