PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical models of ion transport through cell membrane channels

Identyfikatory
Warianty tytułu
PL
Matematyczne modele transportu jonów w kanałach komórkowych
Języki publikacji
EN
Abstrakty
EN
We discuss various models of ion transport through cell membrane channels. Recent experimental data shows that sizes of some ion channels are compared to those of ions and that only few ions may be simultaneously in any single channel. Theoretical description of ion transport in such channels should therefore take into account stochastic fluctuations and interactions between ions and between ions and channel proteins. This is not satisfied by macroscopic continuum models based on the Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are offered by microscopic molecular and Brownian dynamics. We present a derivation of the Poisson-Nernst-Planck equations. We also review some recent models such as single-file diffusion and Markov chains of interacting ions (boundary driven lattice gases). Such models take into account discrete and stochastic nature of ion transport and specifically interactions between ions in ion channels.
PL
W naszej pracy przeglądowej przedstawiamy różne modele transportu jonów w kanałach komórkowych. Rozmiary niektórych kanałów jonowych są rzędu średnicy jonów, a więc tylko kilka jonów może jednocześnie znajdować się w danym kanale. Opis transporu w tak wąskich kanałach powinien brać pod uwagę stochastyczne fluktuacje liczby jonów oraz oddziaływania między nimi. Ciagłe modele makrosko powe oparte na równaniach Poissona-Nernsta-Plancka nie spełniają tych warunków. Bardziej realistyczne modele, takie jak dynamika molekularna i dynamika brownowska, uwzględniają mikroskopową dyskretną strukturę kanałów jonowych. Przed stawiamy wyprowadzenie równań Poissona-Nernsta-Plancka. Przedyskutowujemy również modele łańcuchów Markowa oddziałujących jonów. Modele takie biorą pod uwagę dyskretny charakter transportu jonów i oddziaływania między nimi.
Rocznik
Strony
39--62
Opis fizyczny
Bibliogr. 121 poz., rys.
Twórcy
autor
  • University of Warsaw Institute of Applied Mathematics and Mechanics Banacha 2, 02-097 Warsaw, Poland
  • Wrocław Technical University Institute of Physics Wrocław, Poland
autor
  • Medical University of Wrocław Department of Biophysics Wrocław, Poland
Bibliografia
  • [1] E. Agliari, M. Casartelli, A. Vezzani, Interacting random walkers and non-equilibrium fluctuations, The European Physical J. B 65, 257-264 (2088). doi: 10.1140/epjb/e2008-00330-7
  • [2] T. W. Allen, S-H. Kuyucak, Molecular dynamic study of the KcsA potasium channel, Biophys. J. 77, 2502-2516 (1999).
  • [3] T. W. Allen, O. S. Andersen, B. Roux, On the importance of atomic fluctuations, protein flexibility, and solvent in ion permeation, J. Gen. Physiol. 124, 679-690 (2004). PMID:15572347 [PubMed]
  • [4] T. W. Allen, O. S. Andersen, B. Roux, Molecular dynamics potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels, Biophys. Chem. 124, 251-267 (2006). PMID: 16781050 [PubMed]
  • [5] D. Andrieux, P. Gaspard, Stochastic approach and fluctuation theorem for ion transport, J. Stat. Mech. P02057 (2009).
  • [6] C. M. Armstrong, F. Bezanilla, Current associated with the ionic gating structures in nerve membranes, Ann. N.Y. Acad. Sci. 274, 265-277 (1975).
  • [7] T. Bastug, A. Gray-Weale, S. M. Patra, S. Kuyucak, Role of protein flexibility in ion permeation: A casa study in gramicidin A, Biophys. J. 90, 2285-2296 (2006). PMID: 16415054 [PubMed] doi: 10.1529/biophysj.105.073205
  • [8] O. Beckstein, M. S. P. Sansom, The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores, Phys. Biol. 1, 42-52 (2004). PMID: 16204821 [PubMed] doi: 10.1088/1478-3967/1/1/005
  • [9] S. Berneche, B. Roux, Molecular dynamics of the KcsA K+ channel in a bilayer membrane, Biophys. J. 78, 2900-2917 (2000). PMID: 10827971 [PubMed] doi: 10.1016/S0006- 3495(00)76831-7
  • [10] S. Berneche, B. Roux, Energetics of ion conduction through the K+ channel, Nature 414, 73-77 (2001). PMID: 11689945 [PubMed] doi: 10.1038/35102067
  • [11] S. Berneche, B. Roux, A microscopic view of ion conduction through the K+ channel, Proc. Natl. Acad. Sci. USA 100, 8644-8648 (2003). PMID: 12837936 [PubMed] doi: 10.1073/pnas.1431750100
  • [12] A. Burykin, C. N. Schutz, J. Villa, A. Warshel, Simulation of ion current in realistic models of ion channels: The KcsA potassium channel, Protein 47, 2502-2516 (2002).
  • [13] M. Canales, G. Sese, Generalized Langevin dynamics simulations of NaCl electrolyte solutions, J. Chem. Phys. 109, 6004-6011 (1998).
  • [14] A. D. Cardenas, R. D. Coalson, M. G. Kurnikova Tree-dimensional Poison-Nernst-Planck theory studies: Influence of membrane electrostatics on gramicidin. A channel conductance, Biophys. J. 79, 80-93 (2000).
  • [15] D. Chen, R. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J. 64, 1405-1421 (1993a).
  • [16] D. Chen, R. Eisenberg, Flux, coupling, and selectivity in ionic channels of one conformation, Biophys. J. 65, 727-746 (1993b).
  • [17] S.-H. Chung, T. W. Allen, S. Kuyucak, Conducting-state properties of the KcsA potassium channel from molecular and Brownian dynamics simulations, Biophys. J. 82, 628-645 (2002).
  • [18] S.-H. Chung, S. Kuyucak, Recent advances in ion channel research, Biochim. Biophys. Acta 1565, 267-286 (2002).
  • [19] S.-H. Chung, D. P. Tieleman, Computational and theoretical Approaches to unraveling the permeation dynamics in biological nanotubes, In: Handbook of Theoretical and Computational Nanotechnology. (Eds. Rieth M., Schommers W.), American Scientific Publishers. Vol. X, Chapters 49 (2006).
  • [20] Cooper K., Jakobson E., Wolynes P. (1985): The theory of ion transport through membrane channels. Prog. Biophys. Molec. Biol. 46, 51-96.
  • [21] Corry B., Kuyucak S., Chung S.-H. (2000): Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus Brownian-dynamics. Biophys. J. 78, 2364-2381.
  • [22] Corry B., Allen T. W, Kuyucak S, Chung S.-H. (2001): Mechanisms of permeation and selectivity in calcium channels. Biophys. J. 80, 195-214.
  • [23] Coste C., Delfau J. B., Even C., Saint Jean M. (2010): Single-file diffusion of macroscopic charged particles. Phys. Rev. E 81, 051201.
  • [24] DeFelice L. J. (1997): Electrical Properties of Cells. New York: Plenum Press.
  • [25] Delfau J. B., Coste C., Even C., Saint Jean M. (2010): Single-file diffusion of interacting particles in a finite-sized channel. Phys. Rev. E 82, 031201.
  • [26] Delfau J. B., Coste C., Saint Jean M. (2011): Single-file diffusion of particles with long-range interactions: Damping and finite-size effects. Phys. Rev. E 84, 011101.
  • [27] Delfau J. B., Coste C., Saint Jean M. (2012): Single-file diffusion of particles in a box: Transient behaviors. Phys. Rev. 85, 061111.
  • [28] Delfau J. B., Coste C., Saint Jean M. (2013): Transverse single-file diffusion near the zigzag transition. Phys. Rev. 87, 032163.
  • [29] Derrida B., Evans M. R., Hakim V., Pasquier V. (1993): Exact solution of a 1D assymetric exclusion model using a matrix formulation, J. Phys. A: Math. Gen. 26, 1493-1517.
  • [30] Derrida B. (2007): Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. P07023.
  • [31] Dierl M., Einax M., Maass Ph. (2013): One-dimensional transport of interacting particles: Currents, density profiles, phase diagrams, and symmetries. Phys. Rev. E 87, 062126.
  • [32] Doyle D. A, Cabral J. M, Pfuetzner R. A, Kuo A, Gulbis J. M, Cohen S. L, Chait B. T,
  • [33] Edwards S., Corry B., Kuyucak S., Chung S.-H. (2002): Continuum electrostatics fails to describe ion permeation on the gramicidin channels. Biophys. J. 83, 1348-1360.
  • [34] Eisenberg R. S. (1998): Ionic channels in biological membranes - electrostatic analysis of a natural nanotube. Contemp. Phys. 39, 447-466.
  • [35] Eisenberg R. S. (2000a): Ionic channels: natural nanotubes descrbed by the drift diffusion equations. Superlattices and Microstructures 27, 545-549.
  • [36] Eisenberg R. S. (2000b): Permeation as a diffusion process. In: Biophysics Textbook On-Line. Ed. DeFelice L. J.) Biophysical Society Homepage, http://biosci.umn.edu/biophys/BTOL/.
  • [37] Eisenberg R. S. (2003): Protein, channels and crowded ions. Biophys. Chem. 100, 507-517.
  • [38] Eisenberg R. S. (2013): Ionic interactions in biological and physical systems: a variational treatment. Faraday Discuss 160, 279-296.
  • [39] Eisenberg R. S. (2013): Ionic interactions are everywhere. Physiology 28, 28-38.
  • [40] Eisenberg R. S. (2013): Interacting ions in biophysics. Biophys. J. 104, 1849-1866.
  • [41] Felderhof B. U. (2009): Fluctuation theory of single-file diffusion. J. Chem. Phys. 131, 064504.
  • [42] Finken R., Ballengger V., Hansen J. P. (2003): Onsager model for a variable dielectric permittivity near an interface. Mol. Phys. 101, 2559-2568.
  • [43] Gillespie D., Eisenberg R. S. (2002): Physical descriptions of experimental selectivity measurements in ion channels. Eur. Biophys. J. 31, 454-466.
  • [44] Gillespie D., Nonner W., Eisenberg R. S. (2002a): Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys.: Condens. Matter 14, 12129-12145.
  • [45] Gillespie D., Nonner W., Henderson D., Eisenberg R. S. (2002b): A physical mechanism for large ion selectivity of ion channels. Phys. Chem. Chem. Phys. 4, 4763-4769.
  • [46] Gilson M. K. (2000): Introduction to continuum electrostatics with molecular applications. In:http://gilsolab.umbi.umd.edu
  • [47] Goldman D. E. (1943): Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27, 37-60.
  • [48] Gomułkiewicz J., Bartoszkiewicz M., Mi¸ekisz S. (2001): Some remarks on ion transport across excitable membranes. I. The stationary state. Current Topics in Biophysics 25, 3-9.
  • [49] Graf P., Kurnikova M. G, Coalson R. D, Nitzan A. (2004): Comparison of dynamic lattice Monte Carlo simulations and the dielectric self-energy. Poisson-Nernst-Planck continuum theory for model ion channels. J. Phys. Chem. B 108, 2006-2015
  • [50] Gouaux E., MacKinnon R. (2005): Principles of selective ion transport in channels and pums. Science 310, 1461-1465.
  • [51] Grimmett G. R., Stirzaker D. R. (1992): Probability and Random Processes, Clarendon Press, Oxford.
  • [52] Chandrasekhar S. Stochastic problems in Physics and Astronomy, Rev. Mod. Phys. 1943, vol. 15, 1-89.
  • [53] Hille B. (2001): Ion channels of excitable membranes. Sunderland, Massachusetts USA: Sinauer Asociates.
  • [54] Hodgkin A. L, Katz B. (1949): The effect of sodium ions of the electrical activity of the giant axon of the squid. J. Physiol. 108, 37-77.
  • [55] Hodgkin A. L, Huxley A. F. (1952): A quantitative description of membrane current and its application to conduction and excitation of nerve. J. Physiol. 117, 500-544.
  • [56] Hodgkin A. P, Huxley A. F, Katz B. (1952): Measurement of current-voltage relations in the giant axon of Loligo. J. Physiol. 116, 424-448.
  • [57] Huxley A. F. (2002): From overshoot to voltage clamp. Trends in Neuroscieces 25, 553-558.
  • [58] Hoyles M., Kuyucak S., Chung S.-H. (1998): Computer simulation of ion conductance in membrane channels. Phys. Rev. E 58, 3654-3661.
  • [59] Jiang Da-Quan, Qian M., Qian M. P. (2004): Mathematical Theory of Nonequilibrium Steady States. Lecture Notes in Mathematics 1833, Springer.
  • [60] Karniadakis G., Beskok A., Aluru N. (2005): Microflows and Nanoflows. Fundamentals and Simulation, Interdisciplinary Applied Mathematics 29, Springer, New York.
  • [61] Kollmann M. (2003): Single-file diffusion of atomic and colloidal systems: asymptotic laws, Phys. Rev. Lett. 90, 180602.
  • [62] Kramers H. A. (1940): Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284-304.
  • [63] Krishnamurthy V., Chung S.-H. (2007): Large-scale dynamical models and estimation for permeation in biological membrane ion channels. IEEE 95, 1-28.
  • [64] Kubo R. (1966): The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255-284
  • [65] Kurnikova M. G, Coalson R. D, Graf P, Nitzan A. (1999): A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. Biophys. J. 76, 642-656
  • [66] Kuyucak S, Hoyles M, Chung S.-H. (1998): Analytical solution of Poisson equation for realistic geometrical shapes of membrane ion channels. Biophys. J. 74, 22-36
  • [67] Kuyucak S, Anderson O. S, Chung S.-H. (2001): Models of permeation in ion channels. Rep. Prog. Phys. 64, 1427-1472.
  • [68] Kuyucak S., Chung S.-H. (2002): Permeation models and structure-function relationships in ion channels. J. Biol. Phys. 28, 289-308.
  • [69] Kuyucak S., Bastug T. (2003): Physics of ion channels. J. Biol. Phys.; 29, 429-446.
  • [70] Lee S. Y., Lee A., Chen J., MacKinnon R. (2005): Structure of the KvAP voltage-dependent K+ channel and its dependence on thelipid membrane. Proc. Natl. Acad. Sci. USA 102, 15441-15446.
  • [71] Lelievre T., Rousset M., Stoltz G. (2010): Free Energy Computations - A Mathematical Perspective, World Scientific.
  • [72] Lelievre T., Rousset M., Stoltz G. (2012): Langevin dynamics with constraints and computation of free energy differences. Math. Comput. 81, 2071-2125.
  • [73] Levitt D. (1991): General continuum theory for multiion channel. I. Theory. Biophys. J. 59, 271-277.
  • [74] Levitt D. (1999): Modelling of ion channels. J. Gen. Physiol. 113, 789-794.
  • [75] LeMasurier M, Heginbotham L., Miller Ch. (2001): KcsA: It's a Potassium Channel. 2001: J. Gen. Physiol. 118, 303-313.
  • [76] Loughed T., Zhang Z., Wooley G. A, Borisenko V. (2004): Enginneering charge selectivity in model channels. Bioorg. Med. Chem. 12, 1337-1342.
  • [77] MacKinnon R. (1998): The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280, 68-77.
  • [78] MacKinnon R. (2003): Potasium channels. FEBS Letters 555, 62-65.
  • [79] Maes C., O'Kelly de Galway W. (2013): A low temperature analysis of the boundary driven Kawasaki Process. arXiv:1306.1775v1.
  • [80] Mamonov A. B, Coalson R. D, Nitzan A., Kurnikova M. G. (2003): The role of the dielectric barrier in narrow biological channels: A novel composite approach to modelling singlechannel currents. Biophys. J. 84, 3646-3661.
  • [81] Mamonov A. B., Kurnikova M. G., Coalson R. D. (2006): Diffusion constant of K+ inside gramicidin A: A comparitive study of four computational methods. Biophys. Chem. 124, 268-278.
  • [82] Miller Ch. (1999): Ionic hopping defended. J. Gen. Physiol. 113, 783-787.
  • [83] Miller Ch. (2000): Ion channels: doing hard chemistry with hard ions. Current Opinion in Chem. Biol. 4, 148-151.
  • [84] Morais-Cabral J. H, Zhou Y., MacKinnon R. (2001): Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37-42.
  • [85] Moves H, (1984): Hodgkin-Huxley: Thirty years after. Current Topics in Membrane and Transport 22, 279-329.
  • [86] Moy G, Corry B, Kuyucak S, Chung S.-H. (2000): Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys. J. 78, 2349-2363.
  • [87] Murzyn K. (2002):Methods for representing water in molecular dynamics simulation studies. Advances in Cell Biology 29, 87-101.
  • [88] Nadler B. Mathematical models of ionic flow through open protein channels. Thesis for the degree "Doctor of Philosophy", Tel Aviv University. 2002.
  • [89] I. Nagy and J. Toth, Microscopic reversibility of detailed balance in ion channel models, J. Math. Chem. (2012) 50: 1179-1190.
  • [90] Neher E., Sakmann B. (1976): Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799-802.
  • [91] K. Nelissen, V. R. Misko and F. M. Peeters, Single-file diffusion of interacting particles in a one-dimensional channel, EPL, 2007, vol. 80, 56004.
  • [92] Nelson P. H. A permeation theory for single-file ion channels: Corresponding occupancy states produce Michaelis-Menten behavior, J. Chem. Phys. 2002, vol. 117, 11396-11403.
  • [93] Nelson P. H. (2003a): A permeation theory for single-file ion channels: Concerted association/ dissociation. J. Chem. Phys. 119, 6981-6982.
  • [94] Nelson P. H. (2003b): Modeling the concentration-dependent permeation modes of the KcsA Potasium channel. Phys. Rev. E 68, 061908.
  • [95] Nonner W., Eisenberg R. S. (1998): Ion permeation and glutamate residues linked by Poisson- Nernst-Planck theory in L-type calcium channels. Biophys. J. 75, 1287-1305.
  • [96] Nonner W., Chen D. P, Eisenberg R. S. (1999): Progress and prospect in permeation. J. Gen. Physiol. 113, 773-782.
  • [97] Noskov S. Y., Berneche S., Roux B. (2004): Control of ion selectivity in potasium channels by electrostatic and dynamic proprties of carbonyl ligands. Nature 431, 830-834.
  • [98] Noskov S., Roux B. (2006): Ion selectivity in potasium channels. Biophys. Chem. 124, 279-291.
  • [99] Oosting P. H. (1977): Signal transmission in the nervous system. Rep. Prog. Phys. 42, 1479-1532.
  • [100] Risken H. (1996): Fokker-Planck Equation: Methods of Solution and Applications. Springer Series in Synergetics.
  • [101] Roux B. (2005): Ion conduction and selectivity in K+ channels. Annu. Rev. Biophys. Biomol. Struct. 34, 153-171.
  • [102] Roux B, Allen S., Berneche S., Im W. (2004): Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37, 15-103.
  • [103] Sakmann B., Neher E. (1995): Single-channel recording. New York, Plenum Press.
  • [104] Sands Z. A., Grottesi A., Sansom M. S. P. (2006): The intrinsic flexibility of the Kv voltage sensor and its implication for channel gating. Biophys. J. 90, 1598-1606.
  • [105] Sansom M. S. P., Shrivastava I. H., Bright J. H., Tate Capener Ch. E., Biggin P. C. (2002): Potasium channels: structures, models, simulations. Biochim. Biophys. Acta 1565, 294-307.
  • [106] Schmidt D., Jiang Q.-X., MacKinnon R. (2006): Phospholipids and the origin of cationic gating charges in voltage sensor. Nature 444, 775-779.
  • [107] Schuss Z., Nadler B., Eisenberg R. S. (2001): Derivation of Poisson and Nernst-Planck equation in a bath and channel from a molecular model. Phys. Rev. E 64, 036116.
  • [108] Schutz C. N, Warshel A. (2001): What are the dielectric "constants" of protein and how to validate electrostatic models? Proteins 44, 400-417.
  • [109] Shrivastava I. H, Sansom M. S. P. (2000): Simulation of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78, 557-570.
  • [110] Sten-Knudsen O. (2002):Biological Membranes: Theory of transport, potentials and electric impulses. Cambridge: Cambridge University Press.
  • [111] Tieleman D. P, Biggin P. C, Smith G. R, Sansom M. S. P. (2001): Simulation approaches to ion channel structure-function relationships. Q. Rev. Biophys. 34, 473-561.
  • [112] Tieleman D. P, Borisenko V., Sansom M. S. P., Wooley G. A. (2003): Understanding pHdependent selectivity of alamecithin K18 channels by computer simulation. Biophys. J. 84, 1464-1469
  • [113] Tombola F., Pathak M. M., Isacoff E. Y. (2006): How does voltage open an ion channel? Ann. Rev. Cell. Develp. Biol. 22, 23-52.
  • [114] Van Kampen N. G. (2007): Stochastic Processes in Physics and Chemistry. Third Edition (North-Holland Personal Library)
  • [115] Weiss T. F. (1966): Cellular Biophysics. Cambridge, Massachusetts: A Bradford Book, The MIT Press.
  • [116] Yang K. L, Yiacoumil S. (2002): Canonical Monte Carlo simulation of the fluctuactingcharge molecular water between charged surfaces. J. Chem. Phys. 117, 337-345.
  • [117] Yang K. L, Yiacoumil S, Tsouris C. (2002): Monte Carlo simulation of electric double-layer formation in nanopores. J Chem Phys 117, 8499-8507.
  • [118] Yellen G. (1998): The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239-295.
  • [119] Yesylevskyy S. O., Kharkyanen V. N. (2004): Quasi-particles in the selectivity filter can explain permeation in a channel with multiple occupancy. Phys. Chem. Chem. Phys. 6, 3111-3122.
  • [120] Zhou Y., MacKinnon R. (2003): The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965-975.
  • [121] Zhou Y., Morais-Cabral J. H, Kaufman A, MacKinnon R. (2001): Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2,0 A resolution. Nature 414, 43-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9374a8d-b75f-4a71-96b2-97d52e5d6c60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.