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Abstract. For monodromy representations of holonomic systems, the rigidity can be defined.
We examine the rigidity of the monodromy representations for Appell’s hypergeometric func-
tions, and get the representations explicitly. The results show how the topology of the singular
locus and the spectral types of the local monodromies work for the study of the rigidity.
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1. INTRODUCTION

A local system on P1 \S, S being a finite subset, is said to be rigid if it is determined
uniquely up to isomorphisms by the local monodromies. Katz [10] defined the index
of rigidity, which gives a criterion for the rigidity. The index of rigidity takes a value
in even integers up to 2 for irreducible local systems, and it takes the maximal value 2
if and only if the (irreducible) local system is rigid.

We can extend the notion of the rigidity to local systems on Pm \ S, where S is a
hypersurface. A local system on Pm \ S is identified with an anti-homomorphism

ρ : π1(Pm \ S, b)→ GL(n,C).

Let
S =

⋃

j

Sj

be the irreducible decomposition of S. Fix any irreducible component Sj . If γ, γ′ ∈
π1(Pm \ S, b) both encircle Sj once in the positive direction and do not encircle the
other Sk’s (k 6= j), then γ and γ′ are conjugate to each other in π1(Pm \ S, b).
Then we can define the local monodromy of ρ at Sj by the conjugacy class [ρ(γ)].
The definition of the rigidity is completely similar to the one dimensional case.
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The anti-homomorphism ρ is said to be rigid if it is uniquely determined up to
isomorphisms by the local monodromies.

On the other hand, it seems difficult to define the index of rigidity for higher the
dimensional case, because the rigidity depends on the topology of the hypersurface
S. For the one dimensional case, the topology of S depends only on the number
#S of the points of S. While for higher dimensional cases, there is no such simple
topological invariant, so that the fundamental groups may have various presentations.
Nevertheless, if we fix one hypersurface, it may be possible to define the index of
rigidity for the hypersurface. Bearing this problem in mind, in this paper we study
the rigidity of monodromy representations of holonomic systems satisfied by Appell’s
hypergeometric functions.

Let a, a′, b, b′, c, c′ be complex numbers satisfying c, c′ 6∈ Z≤0. Appell’s hypergeo-
metric functions F1, F2, F3 and F4 are defined by the power series

F1(a, b, b′, c;x, y) =

∞∑

m,n=0

(a)m+n(b)m(b′)n
(c)m+nm!n!

xmyn,

F2(a, b, b′, c, c′;x, y) =
∞∑

m,n=0

(a)m+n(b)m(b′)n
(c)m(c′)nm!n!

xmyn,

F3(a, a′, b, b′, c;x, y) =
∞∑

m,n=0

(a)m(a′)n(b)m(b′)n
(c)m+nm!n!

xmyn,

F4(a, b, c, c′;x, y) =
∞∑

m,n=0

(a)m+n(b)m+n

(c)m(c′)nm!n!
xmyn,

(1.1)

where

(a)m =
Γ(a+m)

Γ(a)
.

These series converge in a neighborhood of (x, y) = (0, 0). We refer to Appell-Kampé
de Fériet [1] and Kimura [11] for basic properties of these functions.

Appell’s hypergeometric functions Fj (j = 1, 2, 3, 4) satisfy holonomic systems
on P2 with singular loci S(j), which are given by

S(1) = {xy(x− 1)(y − 1)(x− y) = 0} ∪ L∞,
S(2) = {xy(x− 1)(y − 1)(x+ y − 1) = 0} ∪ L∞,
S(3) = {xy(x− 1)(y − 1)(xy − x− y) = 0} ∪ L∞,
S(4) = {xy((x− y)2 − 2(x+ y) + 1) = 0} ∪ L∞,

where L∞ denotes the line at infinity. The singular loci S(2), S(3) and S(4) can be
transformed to S(1) by the following variable changes (x, y) → (x′, y′). For S(2), we
take

x′ = x, y′ = 1− y;
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for S(3), we take

x′ =
x− 1

x
, y′ =

1

y
;

and for S(4), we take
x′ = xy, y′ = (1− x)(1− y).

The last one is given by Kato [8, 9]; we note that we find a similar transformation in
Bailey [2] (the formula (1) on page 81) in expressing F4 for some reducible case. This
formula is originally due to Watson [14, §11.6]. We also find the same transformation
as Bailey in Kimura [11, §10], where an integral representation of Euler type for F4

is given.
Moreover, we see that the holonomic system for F3 is transformed to the holonomic

system for F2 by these variable changes.
Thus, in this paper, we consider the holonomic systems for F1, F2 and F4 which

have the same singular locus S(1). Then, for j = 1, 2, 4, the monodromy representation
of the holonomic system for Fj is an anti-homomorphism

ρj : π1(P2 \ S(1))→ GL(nj ,C),

where n1 = 3 and n2 = n4 = 4. Our purpose is to show that these monodromy
representations ρj are rigid.

In [6] we have shown that the monodromy representation of the holonomic system
for F4 with the original singular locus S(4) is rigid. We have also shown in [5] the
rigidity of the monodromy representations of the uniformization systems obtained by
Kato-Sekiguchi.

2. THE FUNDAMENTAL GROUP

We study the fundamental group π1(P2 \ S(1)). We set

S1 = {x = 0}, S2 = {y = 1}, S3 = {x = y}, S4 = {x = 1}, S5 = {y = 0}.

Then we have the irreducible decomposition

S(1) =
5⋃

j=1

Sj ∪ L∞.

In order to give generators of the fundamental group, we take a base point and a
reference plane. As the base point we take b = (2,−1/2), and as the reference plane
we take

F : x+ y =
3

2
.
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We regard F as a complex line with the coordinate x. Then the intersections of F
and the irreducible components of S(1) have the following coordinates.

F ∩ S1 : x = 0,

F ∩ S2 : x = 1
2 ,

F ∩ S3 : x = 3
4 ,

F ∩ S4 : x = 1,

F ∩ S5 : x = 3
2 .

Let γ1, γ2, . . . , γ5 be loops in F \ S(1) with base point b which encircle x =
0, 1/2, 3/4, 1, 3/2, respectively, once in the positive direction such that

γ0 = (γ1γ2γ3γ4γ5)−1

becomes a loop which encircles ∞ once in the positive direction. Thus the loops
γ1, γ2, γ3, γ4 and γ5 encircle the irreducible components S1, S2, S3, S4 and S5, respec-
tively, once in the positive direction. Applying the Zariski-van Kampen theorem [7],
we get the following.

Proposition 2.1. The fundamental group π1(P2 \ S(1), b) has the following presen-
tation:

π1(P2 \ S(1), b) =

〈
γ1, γ2, γ3, γ4, γ5

∣∣∣∣∣

γ1γ2 = γ2γ1, γ4γ5 = γ5γ4,

γ1γ3γ5 = γ3γ5γ1 = γ5γ1γ3,

γ2γ3γ4 = γ3γ4γ2 = γ4γ2γ3

〉
.

Since S(1) can be regarded as a real arrangement of lines, we can also get the
above proposition by applying Randell’s result [13] (see also Theorem 5.57 in [12]).

We set
S
(1)
0 = S(1)|C2

and
S(1)′ = S

(1)
0 ∪ Lx∞ ∪ Ly∞ ⊂ P1 × P1,

where Lx∞ = {x =∞} and Ly∞ = {y =∞}. Then we have the identity of the sets

P2 \ S(1) = P1 × P1 \ S(1)′ = C2 \ S(1)
0 ,

which induces the isomorphisms

π1(P2 \ S(1), b) ∼= π1(P1 × P1 \ S(1)′, b) ∼= π1(C2 \ S(1)
0 , b).

We see that, as elements in π1(P1 × P1 \ S(1)′, b), the loop

γ1γ3γ4
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encircles Lx∞ once in the negative direction, and the loop

γ2γ3γ5

encircles Ly∞ once in the negative direction.
Let

ρ : π1(P2 \ S(1), b)→ GL(n,C)

be an anti-homomorphism, and set

Mj = ρ(γj)

for 0 ≤ j ≤ 5. Thanks to Proposition 2.1, we see that the tuple (M1,M2,M3,M4,M5)
determines ρ, and for the tuple, the relations

M1M2 = M2M1, M4M5 = M5M4,

M5M3M1 = M3M1M5 = M1M5M3,

M4M3M2 = M3M2M4 = M2M4M3

(2.1)

hold. By the definition, the conjugacy classes

[M1], [M2], [M3], [M4], [M5], [M0]

are the local monodromies at S1, S2, S3, S4, S5, L∞, respectively. Moreover, the con-
jugacy classes

[(M4M3M1)−1], [(M5M3M2)−1]

are the local monodromies at Lx∞, Ly∞, respectively.

3. PFAFFIAN SYSTEMS

3.1. F1

Let
z(x, y) = F1(a, b, b′, c;x, y)

be Appell’s hypergeometric series F1, and set

u = t(z, xzx, yzy).

Then, from (1.1), we obtain the Pfaffian system for u of the form

du =

(
A1

dx

x
+A2

dy

y − 1
+A3

d(x− y)

x− y +A4
dx

x− 1
+A5

dy

y

)
u, (3.1)
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where

A1 =




0 1 0
0 b′ − c+ 1 0
0 −b′ 0


 , A2 =




0 0 0
0 0 0
−ab′ −b′ −a− b′ + c− 1


 ,

A3 =




0 0 0
0 −b′ b
0 b′ −b


 , A4 =




0 0 0
−ab −a− b+ c− 1 b

0 0 0


 ,

A5 =




0 0 1
0 0 −b
0 0 b− c+ 1


 .

(3.2)

Proposition 3.1. For the solutions of the Pfaffian system (3.1), the following holds:

(i) If
b′ − c, c− a− b′,−b− b′, c− a− b, b− c 6∈ Z,

there is no logarithmic solution around the singular locus S(1)
0 .

(ii) If a− b− b′ 6∈ Z, there is no logarithmic solution around L∞.
(iii) If a− b, a− b′ 6∈ Z, there is no logarithmic solution around Lx∞ and Ly∞.

Proof. Since the eigenvalues of A1 are 0, 0, b′ − c + 1, there is no integral difference
among the distinct eigenvalues if b′ − c 6∈ Z. Then in this case, the local monodromy
at S1 = {x = 0} is given by e2π

√−1A1 , which is semi-simple. This implies that there
is no logarithmic solution around S1.

The other assertions can be shown similarly. We have only to notice that the
residue matrices around L∞, Lx∞, Ly∞ are −(A1+A2+A3+A4+A5), −(A1+A3+A4),
−(A2 +A3 +A5), respectively, and their eigenvalues are

−(A1 +A2 +A3 +A4 +A5) : a, a, b+ b′,
−(A1 +A3 +A4) : a, b, b,
−(A2 +A3 +A5) : a, b′, b′.

For later use, we collect the conditions in the proposition:

b′ − c, c− a− b′,−b− b′, c− a− b, b− c, a− b− b′, a− b, a− b′ 6∈ Z. (3.3)

Then, if (3.3) holds, all the local monodromies are semi-simple. By (3.2), we can see
the eigenvalues of the local monodromies:

S1 : 1, 1, e(b′ − c),
S2 : 1, 1, e(−a− b′ + c),

S3 : 1, 1, e(−b− b′),
S4 : 1, 1, e(−a− b+ c),

S5 : 1, 1, e(b− c),
L∞ : e(a), e(a), e(b+ b′),

Lx∞ : e(a), e(b), e(b),

Ly∞ : e(a), e(b′), e(b′),

(3.4)
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where we use the notation
e(α) = e2π

√−1α.

The spectral type means the partition which describes the multiplicities of the eigen-
values for a semi-simple matrix. Then the collection of the spectral types of the local
monodromies at S1, S2, S3, S4, S5;L∞;Lx∞, L

y
∞ is

(21, 21, 21, 21, 21; 21; 21, 21),

which we call the full spectral type of the Pfaffian system (3.1).

3.2. F2

Let
z(x, y) = F2(a, b, b′, c, c′;x, 1− y)

be the transformed F2, and set

u(x, y) = t(z, xzx, yzy, xyzxy).

Then we obtain from (1.1) the Pfaffian system (3.1) for this u with

A1 =




0 1 0 0
0 1− c 0 0
0 0 0 1
0 0 0 1− c


 , A2 =




0 0 1 0
0 0 0 1
0 0 1− c′ 0
0 0 0 1− c′


 ,

A3 =




0 0 0 0
0 0 0 0
0 0 0 0
−abb′ b′(c− a− b− 1) b(c′ − a− b′ − 1) c+ c′ − a− b− b′ − 2


 ,

A4 =




0 0 0 0
−ab c− a− b− 1 −b −1

0 0 0 0
abb′ b′(a+ b− c+ 1) bb′ b′


 ,

A5 =




0 0 0 0
0 0 0 0
−ab′ −b′ c′ − a− b′ − 1 −1
abb′ bb′ b(a+ b′ − c′ + 1) b


 .

In a similar way as Proposition 3.1, we obtain the following assertion.

Proposition 3.2. If

c, c′, c+ c′ − a− b− b′, c− a− b+ b′, c′ − a+ b− b′,
a− b− b′, a− b, a− b′, a− b− c′, a− b′ − c 6∈ Z,

(3.5)
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there is no logarithmic solution around the singular locus S(1) and S(1)′ of the Pfaffian
system for u. In this case, all the local monodromies are semi-simple, and the Pfaffian
system has the full spectral type

(22, 22, 31, 31, 31; 31; 211, 211).

The eigenvalues of the local monodromies are

S1 : 1, 1, e(−c), e(−c),
S2 : 1, 1, e(−c′), e(−c′),
S3 : 1, 1, 1, e(c+ c′ − a− b− b′),
S4 : 1, 1, 1, e(c− a− b+ b′),

S5 : 1, 1, 1, e(c′ − a+ b− b′),
L∞ : e(a), e(a), e(a), e(b+ b′),

Lx∞ : e(a), e(b), e(b), e(a− c′),
Ly∞ : e(a), e(b′), e(b′), e(a− c).

3.3. F4

Let
z(x, y) = F4(a, b, c, c′;xy, (1− x)(1− y))

be the transformed F4, and set

u(x, y) = t

(
z, xzx, yzy, xy

(
zxy + ε

zx − zy
x− y

))
,

where
ε = c+ c′ − a− b− 1.

Then, as is shown in [9], we obtain from (1.1) the Pfaffian system (3.1) for this u with

A1 =




0 1 0 0
0 1− c 0 0
0 ε 0 1
0 0 0 1− c


 , A2 =




0 0 0 0
0 0 0 0
−ab ε −c′ 0

0 −(a+ ε)(b+ ε) 0 −c′


 ,

A3 =




0 0 0 0
0 ε −ε 0
0 −ε ε 0
0 0 0 0


 , A4 =




0 0 0 0
−ab −c′ ε 0

0 0 0 0
0 0 −(a+ ε)(b+ ε) −c′


 ,

A5 =




0 0 1 0
0 0 ε 1
0 0 1− c 0
0 0 0 1− c


 .
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In a similar way as Proposition 3.1, we obtain the following assertion.

Proposition 3.3. If

c, c′, 2ε, 2a− c− c′, 2b− c− c′, a− b /∈ Z, (3.6)

there is no logarithmic solution around the singular locus S(1) and S(1)′ of the Pfaffian
system for u. In this case, all the local monodromies are semi-simple, and the Pfaffian
system has the full spectral type

(22, 22, 31, 22, 22; 211; 22, 22).

The eigenvalues of the local monodromies are

S1 : 1, 1, e(−c), e(−c),
S2 : 1, 1, e(−c′), e(−c′),
S3 : 1, 1, 1, e(2(c+ c′ − a− b)),
S4 : 1, 1, e(−c′), e(−c′),
S5 : 1, 1, e(−c), e(−c),
L∞ : e(c+ c′), e(c+ c′), e(2a), e(2b),

Lx∞ : e(a), e(a), e(b), e(b),

Ly∞ : e(a), e(a), e(b), e(b).

4. FORMULATION OF THE PROBLEM

As stated in the Introduction, a local system (a representation) is said to be rigid if it is
determined by the local monodromies uniquely up to isomorphisms. We are interested
in the rigidity of the monodromy representations of the holonomic systems for Appell’s
hypergeometric functions. If one wants to know the rigidity of a representation ρ, one
may look for all representation classes [ρ′] with the same local monodromies as ρ.
Thus the problem is to determine all representation classes with prescribed local
monodromies. In this paper, we slightly extend the problem. In order to explain the
motivation, we note the following three facts.

First, the index of rigidity, which gives a criterion for the rigidity of local systems
on P1 \S, is determined by the rank of the local system, the number #S of the points
in S and the spectral types of the local monodromies. Then we expect that, also in
higher dimensional cases, the rigidity is determined by the spectral types of the local
monodromies.

Second, we see that the eigenvalues of the local monodromies of each ρj satisfy
some relations which cannot be directly derived from the relations (2.1). For exam-
ple, if we denote the eigenvalues of the local monodromy at Sj of the monodromy
representation ρ1 for F1 by 1, 1, ej (1 ≤ j ≤ 5), we have

e1e2 = e4e5.
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We are interested in how these relations are derived. Then we do not assume these
relations a priori, and look for conjugacy classes of monodromy representations with
prescribed spectral types.

Third, for any representation ρ of π1(P2\S(1)) and any tuple α = (α1, α2, . . . , α5) ∈
(C×)5, we get a new representation αρ defined by

(αρ)(γj) = αjρ(γj) (1 ≤ j ≤ 5),

which we call the multiplication of ρ by α. It seems natural to consider the represen-
tations modulo multiplications.

Thus we formulate our problem as follows.

Problem 4.1. Determine all irreducible representation classes modulo multiplica-
tions with prescribed spectral types of local monodromies.

5. RIGIDITY OF THE MONODROMY OF F1

As we have seen in Section 3.1, the monodromy representation of the Pfaffian system
for F1 is an anti-homomorphism

ρ1 : π1(P2 \ S(1), b)→ GL(3,C)

whose spectral type is
(21, 21, 21, 21, 21; 21) (5.1)

if (3.3) holds. Here we call the collection of the spectral types of the local monodromies
at S1, S2, S3, S4, S5;L∞ the spectral type of ρ1. We shall determine the representation
classes [ρ] modulo multiplications with the spectral type (5.1).

Let ρ = (M1,M2,M3,M4,M5) be an irreducible representation of π1(P2 \ S(1), b)
with the spectral type (5.1). By a multiplication, we can send the multiple eigenvalue
of each Mj to 1, and hence we may assume

Mj ∼




1
1

ej


 (1 ≤ j ≤ 5),

where ej 6= 0, 1. SinceM1 andM2 commute, we can send them into diagonal matrices
simultaneously by a similar transformation. If we set

M1 =




1
1

e1


 , M2 =




1
1

e2


 ,

we get only reducible representations, which can be shown in a similar way as in the
proof of Theorem 1.1 in [6]. Then we set

M1 =




1
1

e1


 , M2 =




1
e2

1


 . (5.2)
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For j = 3, 4, 5, we can set

Mj = I3 +



xj
yj
zj


(1 pj qj

)
,

where
xj = ej − 1− pjyj − qjzj .

By a similar transformation which keeps M1,M2 invariant, we can send p3 = q3 = 1.
We put these expressions into the relations (2.1). Set

R1 = M4M5 −M5M4,

R2 = M5M3M1 −M3M1M5,

R3 = M3M1M5 −M1M5M3,

R4 = M1M5M3 −M5M3M1,

R5 = M4M3M2 −M3M2M4,

R6 = M3M2M4 −M2M4M3,

R7 = M2M4M3 −M4M3M2.

(5.3)

We denote the (i, j) entry of a matrix A by A[i, j]. We have

R2[2, 1]−R2[2, 2] = (p5 − 1)y3(−1 + e5 + y5 − p5y5 + e1z5 − q5z5).

If p5 6= 1, y3 = 0 or −1+e5+y5−p5y5+e1z5−q5z5 = 0 holds, each of which gives only
a reducible representation. Then we have p5 = 1. In a similar way, we get q4 = 1. We
can show that z3z5 = 0 yields no irreducible representation. Then we have z3z5 6= 0,
and in this case q5, y3 are determined by R4[3, 1], R4[2, 3], respectively in this order.
Now we have

R4[1, 3] · y5(z3 + z3
2 + e3z5) + (R2[2, 1]−R2[2, 3])(e1 − 1)z3z5

=
(e1 − 1)y5(z3 + z3

2 + e3z5)(e5z3
2 − e1e3z52)

z3z5
.

We can show that y5(z3 + z3
2 + e3z5) = 0 yields no irreducible representation. Then

we come to the relation
e5z3

2 − e1e3z52 = 0.

Now we set
e1 = f1

2, e3 = f3
2, e5 = f5

2,

which makes the above relation

(f5z3 + f1f3z5)(f5z3 − f1f3z5) = 0.

Then we have
z5 = −f5z3

f1f3
,

f5z3
f1f3

.
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Here we choose the first value. Then by using the relations (5.3), we can determine
remaining parameters, and come to the relation

−e2e4 + e2
2f3

2 + 2e2e4p4 − 2e2f3
2p4 − e2e4p42 + f3

2p4
2 = 0.

By setting
e2 = f2

2, e4 = f4
2,

we reduce this relation to

(f2
2f3 + f2f4 − f3p4 − f2f4p4)(f2

2f3 − f2f4 − f3p4 + f2f4p4) = 0.

Then we have
p4 =

f2(f2f3 − f4)

f3 − f2f4
,

f2(f2f3 + f4)

f3 + f2f4
.

We choose the first value. Then all parameters are written in terms of fj (1 ≤ j ≤ 5).
Put them into R1. Then, for example, we have

R1[3, 3] = − (f3 − f2f4)(f3 − f1f5)(f4 − f1f2f5)(f1 − f3f5)(f1f2 − f4f5)

f1f2f3f5(−1 + f1)(1 + f1)(f2f3 − f4)
.

By examining all possibilities for R1[3, 3] = 0, we conclude that only the relation

f1f2 − f4f5 = 0

gives an irreducible representation. For the other choices of (z5, p4), we have the
relations

f1f2 ± f4f5 = 0,

and irreducible representations.
In this way, we obtain two representations ρ(1) = (M1,M2,M

(1)
3 ,M

(1)
4 ,M

(1)
5 ) and

ρ(2) = (M1,M2,M
(2)
3 ,M

(2)
4 ,M

(2)
5 ), where M1,M2 are given in (5.2). The explicit

forms of M (k)
j (j = 3, 4, 5) are

M
(1)
3 = I3+



(1−e1e2)(f2f3−f4)(f2−f3f4)
(e1−1)(e2−1)f2f4

(1−e1e2)(f2f3−f4)(f2−f3f4)
(e1−1)(e2−1)f2f4

(1−e1e2)(f2f3−f4)(f2−f3f4)
(e1−1)(e2−1)f2f4

− (f2f4−f3)(f2−f3f4)
(e2−1)f4

− (f2f4−f3)(f2−f3f4)
(e2−1)f4

− (f2f4−f3)(f2−f3f4)
(e2−1)f4

(f2f3−f4)(e1f2−f3f4)
(e1−1)f2f4

(f2f3−f4)(e1f2−f3f4)
(e1−1)f2f4

(f2f3−f4)(e1f2−f3f4)
(e1−1)f2f4


 ,

M
(1)
4 = I3+



(1−e1e2)(f2f4−f3)(f2−f3f4)
(e1−1)(e2−1)f2f3

(e1e2−1)(f2f3−f4)(f2−f3f4)
(e1−1)(e2−1)f3

(1−e1e2)(f2f4−f3)(f2−f3f4)
(e1−1)(e2−1)f2f3

(f2f4−f3)(f2−f3f4)
(e2−1)f2f3

− (f2f3−f4)(f2−f3f4)
(e2−1)f3

(f2f4−f3)(f2−f3f4)
(e2−1)f2f3

(f2f4−f3)(e1f2−f3f4)
(e1−1)f2f3

− (f2f3−f4)(e1f2−f3f4)
(e1−1)f3

(f2f4−f3)(e1f2−f3f4)
(e1−1)f2f3


 ,

M
(1)
5 = I3+



(e1e2−1)(f2f3−f4)(e1f2−f3f4)
(e1−1)(e2−1)f3e4

(e1e2−1)(f2f3−f4)(e1f2−f3f4)
(e1−1)(e2−1)f3e4

e1(e1e2−1)(f2f3−f4)(f2−f3f4)
(e1−1)(e2−1)f3e4

f2(f2f4−f3)(e1f2−f3f4)
(e2−1)f3e4

f2(f2f4−f3)(e1f2−f3f4)
(e2−1)f3e4

e1f2(f2f4−f3)(f2−f3f4)
(e2−1)f3e4

−(f2f3−f4)(e1f2−f3f4)
(e1−1)f3e4

− (f2f3−f4)(e1f2−f3f4)
(e1−1)f3e4

− e1(f2f3−f4)(f2−f3f4)
(e1−1)f3e4


 ,

(5.4)
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and

M
(2)
3 = I3+



(1−e1e2)(f2f3+f4)(f2+f3f4)
(e1−1)(e2−1)f2f4

(1−e1e2)(f2f3+f4)(f2+f3f4)
(e1−1)(e2−1)f2f4

(1−e1e2)(f2f3+f4)(f2+f3f4)
(e1−1)(e2−1)f2f4

− (f2f4+f3)(f2+f3f4)
(e2−1)f4

− (f2f4+f3)(f2+f3f4)
(e2−1)f4

− (f2f4+f3)(f2+f3f4)
(e2−1)f4

(f2f3+f4)(e1f2+f3f4)
(e1−1)f2f4

(f2f3+f4)(e1f2+f3f4)
(e1−1)f2f4

(f2f3+f4)(e1f2+f3f4)
(e1−1)f2f4


 ,

M
(2)
4 = I3+



(1−e1e2)(f2f4+f3)(f2+f3f4)
(e1−1)(e2−1)f2f3

(e1e2−1)(f2f3+f4)(f2+f3f4)
(e1−1)(e2−1)f3

(1−e1e2)(f2f4+f3)(f2+f3f4)
(e1−1)(e2−1)f2f3

(f2f4+f3)(f2+f3f4)
(e2−1)f2f3

− (f2f3+f4)(f2+f3f4)
(e2−1)f3

(f2f4+f3)(f2+f3f4)
(e2−1)f2f3

(f2f4+f3)(e1f2+f3f4)
(e1−1)f2f3

− (f2f3+f4)(e1f2+f3f4)
(e1−1)f3

(f2f4+f3)(e1f2+f3f4)
(e1−1)f2f3


 ,

M
(2)
5 = I3+




(e1e2−1)(f2f3+f4)(e1f2+f3f4)
(e1−1)(e2−1)f3e4

(e1e2−1)(f2f3+f4)(e1f2+f3f4)
(e1−1)(e2−1)f3e4

e1(e1e2−1)(f2f3+f4)(f2+f3f4)
(e1−1)(e2−1)f3e4

f2(f2f4+f3)(e1f2+f3f4)
(e2−1)f3e4

f2(f2f4+f3)(e1f2+f3f4)
(e2−1)f3e4

e1f2(f2f4+f3)(f2+f3f4)
(e2−1)f3e4

−(f2f3+f4)(e1f2+f3f4)
(e1−1)f3e4

− (f2f3+f4)(e1f2+f3f4)
(e1−1)f3e4

− e1(f2f3+f4)(f2+f3f4)
(e1−1)f3e4


 .

(5.5)

By using these explicit expressions, we can calculate the local monodromies at infinity
in P2 and in P1 × P1. For ρ(1), the local monodromy at L∞, Lx∞, Ly∞ are given by

diag

[
1

e1e2
,

1

e1e2
,

1

e3

]
, diag

[
1

e1e2
,
f2
f3f4

,
f2
f3f4

]
, diag

[
1

e1e2
,
f4
f2f3

,
f4
f2f3

]
,

respectively. For ρ(2), the local monodromy at L∞, Lx∞, Ly∞ is given by

diag

[
1

e1e2
,

1

e1e2
,

1

e3

]
, diag

[
1

e1e2
,− f2

f3f4
,− f2

f3f4

]
, diag

[
1

e1e2
,− f4

f2f3
,− f4

f2f3

]
,

respectively.
A similar transformation which keeps M1,M2 invariant is a transformation by a

diagonal matrix. Hence we see that ρ(1) and ρ(2) are not isomorphic.
Since fj is a square root of ej , we have a Galois group Z2 generated by

σj : fj 7→ −fj

for j = 2, 3, 4. Set

G1 = 〈σ2, σ3, σ4〉 = (Z2)3. (5.6)

Then we see that G1 acts on {ρ(1), ρ(2)} as

σj(ρ
(1)) = ρ(2), σj(ρ

(2)) = ρ(1) (j = 2, 3, 4). (5.7)
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Thus we get the following assertion.

Theorem 5.1. Let
ρ : π1(P2 \ S(1), b)→ GL(3,C)

be an irreducible anti-homomorphism with spectral type (2, 1) at each irreducible com-
ponent Sj (1 ≤ j ≤ 5). We assume that the local monodromy at each Sj is given by
diag[1, 1, ej ] with ej ∈ C \ {0, 1} (1 ≤ j ≤ 5). Then we have

e1e2 = e4e5,

and ρ is isomorphic to one of ρ(1) = (M1,M2,M
(1)
3 ,M

(1)
4 ,M

(1)
5 ) and ρ(2) =

(M1,M2,M
(2)
3 ,M

(2)
4 ,M

(2)
5 ) given by (5.2), (5.4), (5.5), where f2, f3, f4 are square

roots of e2, e3, e4, respectively. The local monodromy of ρ at L∞ is given by

diag

[
1

e1e2
,

1

e1e2
,

1

e3

]
.

The Galois group G1 given by (5.6) acts on the representations {ρ(1), ρ(2)} as (5.7).

Since ρ(1) and ρ(2) have the same local monodromy at S1, S2, . . . , S5, L∞, we can-
not distinguish them by the local monodromies. However, if we regard them as local
systems on P1×P1\S(1)′, we can distinguish them by looking at the local monodromy
at Lx∞ or at Ly∞.

6. RIGIDITY OF THE MONODROMY OF F2

By Proposition 3.2, the monodromy representation of the Pfaffian system for F2 is an
anti-homomorphism

ρ2 : π1(P2 \ S(1), b)→ GL(4,C)

whose spectral type is
(22, 22, 31, 31, 31; 31) (6.1)

if (3.5) holds. We shall determine the representation classes [ρ] modulo multiplication
with the spectral type (6.1).

Let ρ = (M1,M2,M3,M4,M5) be an irreducible representation of π1(P2 \ S(1), b)
with the spectral type (6.1). By a multiplication, we can send (one of) the multiple
eigenvalues of each Mj to 1, and hence we may assume

Mj ∼




1
1

ej
ej


 (j = 1, 2),

Mj ∼




1
1

1
ej


 (j = 3, 4, 5),
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where ej 6= 0, 1. SinceM1 andM2 commute, we can send them into diagonal matrices
simultaneously by a similar transformation. In order to get an irreducible representa-
tion, we set

M1 =




1
1

e1
e1


 , M2 =




1
e2

1
e2


 . (6.2)

For j = 3, 4, 5, we can set

Mj = I4 +




xj
yj
zj
wj



(
1 pj qj rj

)
,

where
xj = ej − 1− pjyj − qjzj − rjwj .

By a similar transformation which keeps M1,M2 invariant, we can send p3 = q3 =
r3 = 1. We define Rj (1 ≤ j ≤ 7) by (5.3).

We have
R7[2, 1]−R7[2, 3] = (1− e2)(q4 − 1)y4,

R4[3, 1]−R4[3, 2] = (1− e1)(p5 − 1)z5,

R7[3, 2]−R7[3, 4] = (1− e2)(p4 − r4)z4,

R4[2, 3]−R4[2, 4] = (1− e1)(q5 − r5)y5.

Since we can see that y4y5z4z5 = 0 yields only reducible representations, we get

q4 = p5 = 1, r4 = p4, r5 = q5.

Similarly, by eliminating the cases which yield only reducible representations,
we can determine z4, w3, z5, z3, y5, y3, w4, y4 by using R1[2, 1] − R1[2, 2], R4[4, 1],
R1[4, 1], R4[2, 3], R4[1, 3], R7[2, 1], R7[4, 3], R6[4, 4], respectively. Then we get

R6[4, 3] = (e2
2e3 − e2e4 − 2e2e3p4 + 2e2e4p4 + e3p4

2 − e2e4p42)A,

where we can see A 6= 0 by the irreducibility. If we set

e2 = f2
2, e3 = f3

2, e4 = f4
2,

the first factor of R6[4, 3] is factored, and we get

p4 =
f2(f2f3 − f4)

f3 − f2f4
, p4 =

f2(f2f3 + f4)

f3 + f2f4
.

We choose the first value. Then R2[2, 1] is factored into two polynomials, one of
which yields only reducible representations. From the other factor, we get a value
of w5. Putting the value into R2, we have

R2[4, 4] = (−e1e5e12f32 + 2e1e5q5 − 2e1f3
2q5 − e1e5q52 + f3

2q5
2)B,
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where we can see B 6= 0 by the irreducibility. If we set

e1 = f1
2, e5 = f5

2,

the first factor of R2[4, 4] is factored, and then we get

q5 =
f1(f1f3 − f5)

f3 − f1f5
, q5 =

f1(f1f3 + f5)

f3 + f1f5
.

We choose the first value. Then all parameters are written in terms of f1, f2, . . . , f5,
and we get an irreducible representation. For the other choices of (p4, q5), we also get
irreducible representations.

In this way, we obtain four representations

ρ(k) = (M1,M2,M
(k)
3 ,M

(k)
4 ,M

(k)
5 ) (k = 1, 2, 3, 4),

where M1,M2 are given in (6.2). The explicit forms of M (1)
j are given as follows. We

set
M

(1)
3 = I4 + (aij), M

(1)
4 = I4 + (bij), M

(1)
5 = I4 + (cij). (6.3)

Then we have

a11 = a12 = a13 = a14 =
(f2f3 + f4)(f1f3 − f5)(1 + f1f2f4f5)

(e1 − 1)(e2 − 1)f4f5
,

a21 = a22 = a23 = a24 = − (f3 + f2f4)(f1f3 − f5)(f2 + f1f4f5)

(e1 − 1)(e2 − 1)f4f5
,

a31 = a32 = a33 = a34 =
(f2f3 + f4)(f1f5 − f3)(f1 + f2f4f5)

(e1 − 1)(e2 − 1)f4f5
,

a41 = a42 = a43 = a44 = − (f3 + f2f4)(f1f5 − f3)(f1f2 + f4f5)

(e1 − 1)(e2 − 1)f4f5
,

b11 = b13 =
(f3 + f2f4)(f1f3 − f5)(1 + f1f2f4f5)

(e1 − 1)(e2 − 1)f3f5
,

b12 = b14 =
f2(f2f3 + f4)(f1f3 − f5)(1 + f1f2f4f5)

(e1 − 1)(e2 − 1)f3f5
,

b21 = b23 = − (f3 + f2f4)(f1f3 − f5)(f2 + f1f4f5)

(e1 − 1)(e2 − 1)f2f3f5
,

b22 = b24 = − (f2f3 + f4)(f1f3 − f5)(f2 + f1f4f5)

(e1 − 1)(e2 − 1)f3f5
,

b31 = b33 =
(f3 + f2f4)(f1f5 − f3)(f1 + f2f4f5)

(e1 − 1)(e2 − 1)f3f5
,

b32 = b34 =
f2(f2f3 + f4)(f1f5 − f3)(f1 + f2f4f5)

(e1 − 1)(e2 − 1)f3f5
,

b41 = b43 = − (f3 + f2f4)(f1f5 − f3)(f1f2 + f4f5)

(e1 − 1)(e2 − 1)f2f3f5
,

b42 = b44 = − (f2f3 + f4)(f1f5 − f3)(f1f2 + f4f5)

(e1 − 1)(e2 − 1)f3f5
,
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c11 = c12 =
(f2f3 + f4)(f1f5 − f3)(1 + f1f2f4f5)

(e1 − 1)(e2 − 1)f3f4
,

c13 = c14 = −f1(f2f3 + f4)(f1f3 − f5)(1 + f1f2f4f5)

(e1 − 1)(e2 − 1)f3f4
,

c21 = c22 = − (f3 + f2f4)(f1f5 − f3)(f2 + f1f4f5)

(e1 − 1)(e2 − 1)f3f4
,

c23 = c24 =
f1(f3 + f2f4)(f1f3 − f5)(f2 + f1f4f5)

(e1 − 1)(e2 − 1)f3f4
,

c31 = c32 = − (f2f3 + f4)(f1f5 − f3)(f1 + f2f4f5)

(e1 − 1)(e2 − 1)f1f3f4
,

c33 = c34 =
(f2f3 + f4)(f1f3 − f5)(f1 + f2f4f5)

(e1 − 1)(e2 − 1)f3f4
,

c41 = c42 =
(f3 + f2f4)(f1f5 − f3)(f1f2 + f4f5)

(e1 − 1)(e2 − 1)f1f3f4
,

c43 = c44 = − (f3 + f2f4)(f1f3 − f5)(f1f2 + f4f5)

(e1 − 1)(e2 − 1)f3f4
.

As in the previous section, we consider the Galois group

G2 = 〈σ1, σ2, σ3, σ4, σ5〉 = (Z2)5, (6.4)

where
σj : fj 7→ −fj (1 ≤ j ≤ 5).

The matrices M (k)
j with k = 2, 3, 4 are defined by

M
(2)
j = σ1(M

(1)
j ),

M
(3)
j = σ2(M

(1)
j ),

M
(4)
j = σ3(M

(1)
j )

for j = 3, 4, 5. Thus we have

ρ(2) = σ1(ρ(1)), ρ(3) = σ2(ρ(1)), ρ(4) = σ3(ρ(1)). (6.5)

We find that every σj permutes (ρ(1), ρ(2), ρ(3), ρ(4)). If we denote ρ(k) simply by k,
the action is given by

σ1(1, 2, 3, 4) = (2, 1, 4, 3),

σ2(1, 2, 3, 4) = (3, 4, 1, 2),

σ3(1, 2, 3, 4) = (4, 3, 2, 1),

σ4(1, 2, 3, 4) = (3, 4, 1, 2),

σ5(1, 2, 3, 4) = (2, 1, 4, 3).

(6.6)
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Now we look at the (1, 1)-entries of M (k)
3 (1 ≤ k ≤ 4):

M
(1)
3 [1, 1] = 1 +

(f2f3 + f4)(f1f3 − f5)(1 + f1f2f4f5)

(e1 − 1)(e2 − 1)f4f5
,

M
(2)
3 [1, 1] = 1 +

(f2f3 + f4)(−f1f3 − f5)(1− f1f2f4f5)

(e1 − 1)(e2 − 1)f4f5
,

M
(3)
3 [1, 1] = 1 +

(−f2f3 + f4)(f1f3 − f5)(1− f1f2f4f5)

(e1 − 1)(e2 − 1)f4f5
,

M
(4)
3 [1, 1] = 1 +

(f2f3 − f4)(f1f3 + f5)(1 + f1f2f4f5)

(e1 − 1)(e2 − 1)f4f5
,

which implies that no two representations in {ρ(1), ρ(2), ρ(3), ρ(4)} are isomorphic.
We can calculate the local monodromies at infinity in P2 and in P1×P1. The local

monodromies at L∞, Lx∞, Ly∞ for ρ(k) (1 ≤ k ≤ 4) are all semi-simple, and have the
spectral type (3, 1) at L∞ and (2, 1, 1) at Lx∞ and Ly∞. The list of the eigenvalues are
given by the following table.

ρ(1) : L∞ : − 1

f1f2f3f4
,− 1

f1f2f3f4
,− 1

f1f2f3f4
,− f4f5

f1f2e3
,

Lx∞ :
f5
f1f3

,
f5
f1f3

,− 1

f1f2f4f5
,− f2

f1f4f5
,

Ly∞ : − f4
f2f3

,− f4
f2f3

,− 1

f1f2f4f5
,− f1

f2f4f5
,

ρ(2) : L∞ :
1

f1f2f3f4
,

1

f1f2f3f4
,

1

f1f2f3f4
,
f4f5
f1f2e3

,

Lx∞ : − f5
f1f3

,− f5
f1f3

,
1

f1f2f4f5
,

f2
f1f4f5

,

Ly∞ : − f4
f2f3

,− f4
f2f3

,
1

f1f2f4f5
,

f1
f2f4f5

,

ρ(3) : L∞ :
1

f1f2f3f4
,

1

f1f2f3f4
,

1

f1f2f3f4
,
f4f5
f1f2e3

,

Lx∞ :
f5
f1f3

,
f5
f1f3

,
1

f1f2f4f5
,

f2
f1f4f5

,

Ly∞ :
f4
f2f3

,
f4
f2f3

,
1

f1f2f4f5
,

f1
f2f4f5

,

ρ(4) : L∞ : − 1

f1f2f3f4
,− 1

f1f2f3f4
,− 1

f1f2f3f4
,− f4f5

f1f2e3
,

Lx∞ : − f5
f1f3

,− f5
f1f3

,− 1

f1f2f4f5
,− f2

f1f4f5
,

Ly∞ :
f4
f2f3

,
f4
f2f3

,− 1

f1f2f4f5
,− f1

f2f4f5
.
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We see that the representations ρ(1) and ρ(4) cannot be distinguished by looking at
the local monodromies in S(1) ⊂ P2, and the same holds for ρ(2) and ρ(3). They can
be distinguished by the local monodromies in S(1)′ ⊂ P1 × P1.

Theorem 6.1. Let
ρ : π1(P2 \ S(1), b)→ GL(4,C)

be an irreducible anti-homomorphism with spectral type (2, 2) at S1, S2 and
(3, 1) at S3, S4, S5. We assume that the eigenvalues of the local monodromies
at S1, S2 are given by (1, 1, e1, e1), (1, 1, e2, e2), respectively, and at S3, S4, S5 by
(1, 1, 1, e3), (1, 1, 1, e4), (1, 1, 1, e5), respectively, where ej ∈ C \ {0, 1} (1 ≤ j ≤ 5).
Then ρ is isomorphic to one of ρ(k) = (M1,M2,M

(k)
3 ,M

(k)
4 ,M

(k)
5 ) (1 ≤ k ≤ 4) given

by (6.2), (6.3), (6.5), where fj is a square root of ej (1 ≤ j ≤ 5). The local monodromy
at L∞ is given by

diag

[
− 1

f1f2f3f4
,− 1

f1f2f3f4
,− 1

f1f2f3f4
,− f4f5

f1f2e3

]

for ρ(1) and ρ(4), and by

diag

[
1

f1f2f3f4
,

1

f1f2f3f4
,

1

f1f2f3f4
,
f4f5
f1f2e3

]

for ρ(2) and ρ(3). The Galois group G2 given by (6.4) acts on the representations
{ρ(1), ρ(2), ρ(3), ρ(4)} as (6.6), where k denotes ρ(k).

7. RIGIDITY OF THE MONODROMY OF F4

By Proposition 3.3, the monodromy representation of the Pfaffian system for F4 is an
anti-homomorphism

ρ3 : π1(P2 \ S(1), b)→ GL(4,C)

whose spectral type is
(22, 22, 31, 22, 22; 211) (7.1)

if (3.6) holds. We shall determine the representation classes [ρ] modulo multiplication
with the spectral type (7.1).

Let ρ = (M1,M2,M3,M4,M5) be an irreducible representation of π1(P2 \ S(1), b)
with the spectral type (7.1). By a multiplication, we can send (one of) the multiple
eigenvalues of each Mj to 1, and hence we may assume

Mj ∼




1
1

ej
ej


 (j = 1, 2, 4, 5),

M3 ∼




1
1

1
e3


 ,
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where ej 6= 0, 1. In the same reason as in the case of F2, we may assume that M1,M2

are given by (6.2). We can set

M3 = I4 +




x
y
z
w



(
1 1 1 1

)

with
w = e3 − 1− x− y − z.

The matrices M4,M5 are parametrized as follows. Since

rank(M4 − I4) = rank(M5 − I4) = 2,

we may assume that the first and the second columns of M4 − I4 are linearly inde-
pendent, and also the first and the third columns ofM5−I4 are linearly independent.
Then, by using 2× 2 matrices P,Q,U, V , we have

M4 = I4 +

(
C
U

)(
I2 P

)
,

M5 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



(
I4 +

(
D
V

)(
I2 Q

))



1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

where
C = (e4 − 1)I2 − PU,
D = (e5 − 1)I2 −QV.

We set
P = (pij), Q = (qij), U = (uij), V = (vij).

Define Rj (1 ≤ j ≤ 7) by (5.3). We are going to determine the parameters so that
Rj = O for 1 ≤ j ≤ 7 and (M1,M2, . . . ,M5) is irreducible.

Note that R2, R3, R4 are relations on vij , qij , x, y, z, e1, e3, e5, and R5, R6, R7 on
uij , pij , x, y, z, e2, e3, e4. First we consider the relations R2 and R4. We have

R4[2, 3]−R4[2, 4] = (1− e1)(q12v11 − v12 + q22v12),

R4[4, 1]−R4[4, 2] = (1− e1)(v21 − q11v21 − q21v22).

If we assume v12v22 6= 0, these relations determine q22 and q21. We assume q12 6= 0.
Then q12 is determined by R4[1, 3]−R4[1, 4]. The relation R4[3, 1]−R4[3, 2] contains a
factor (q11−1), and we choose q11 = 1. Putting these values into R4, we can determine
z by R4[4, 1]. We assume v11 6= v12. Then x is determined by R4[2, 3], and also y and
v22 are determined by R4[1, 3] and R2[2, 1], respectively. Now we have

R2[2, 3] =

(e1
2e3v11

2 − e1e5v112 − 2e1e3v11v12 + 2e1e5v11v12 + e3v12
2 − e1e5v122)A
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with a non-zero factor A. If we set

e1 = f1
2, e3 = f3

2, e5 = f5
2,

the first factor of R2[2, 3] is factored into two factors, and we get

v11 =
(f3 − f1f5)v12
f1(f3f1 − f5)

, v11 =
(f3 + f1f5)v12
f1(f3f1 + f5)

.

We choose the first value. Thus we get

v11 =
(f3 − f1f5)v12
f1(f1f3 − f5)

,

v22 =
f1(f1f3f5 − 1)v21

f3f5 − f1
,

q11 = 1,

q12 =
(f1f3 − f5)(f3f5 − f1)

f3(e1 − 1)v21
,

q21 = 0,

q22 =
f1f3 − e1f5 − e3f5 + f1f3e5 − f1f3v21 + f1

3f3v21
f1f3(e1 − 1)v21

,

x =
−e1f3 + f1f5 + f1

3e3f5 − e1f3e5 − f3v12 + e1f3v12
f1f5(e1 − 1)

,

y = −f3v12
f1f5

,

z =
f1f3 − e1f5 − e3f5 + f1f3e5 − f1f3v21 + f1

3f3v21
f5(e1 − 1)

,

which makes R2 = R4 = O, and hence R3 = O. In the above, we made several
assumptions. If we assume otherwise, we get other sets of (vij , qij , x, y, z), which also
make R2 = R3 = R4 = O.

In a similar way, we solve the relations R6 and R7. We have

R7[3, 2]−R7[3, 4] = (1− e2)(p12u11 − u12 + p22u12),

R7[4, 1]−R7[4, 3] = (1− e2)(u21 − p11u21 − p21u22).

If we assume u12u22 6= 0, these relations determine p22 and p21. If we assume p12 6= 0,
its value is determined by R7[1, 2] − R7[1, 4]. We choose a solution p11 = 1 from
R7[2, 1]−R7[2, 3]. Then y is determined by R7[4, 1]. We assume u11 6= u12, and then x
is determined by R7[3, 2]. The values of z and u22 are determined by R6[1, 1]+R6[3, 1]
and R6[2, 1] +R6[4, 1], respectively. Now we have

R7[1, 2] =

(e2
2e3u11

2 − e2e4u112 − 2e2e3u11u12 + 2e2e4u11u12 + e3u12
2 − e2e4u122)B
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with some factor B. If we set

e2 = f2
2, e3 = f3

2, e4 = f4
2,

the first factor of R7[1, 2] is factored into two factors, and we get

u11 =
(f3 − f2f4)u12
f2(f2f3 − f4)

, u11 =
(f3 + f2f4)u12
f2(f2f3 + f4)

.

We choose the first value. Then we get

u11 =
(f3 − f2f4)u12
f2(f2f3 − f4)

,

u22 =
f2(f2f3f4 − 1)u21

f3f4 − f2
,

p11 = 1,

p12 =
(f2f3 − f4)(f3f4 − f2)

f3(e2 − 1)u21
,

p21 = 0,

p22 =
f2f3 − e2f4 − e3f4 + f2f3e4 − f2f3u21 + f2

3f3u21
f2f3(e2 − 1)u21

,

x =
−e2f3 + f2f4 + f2

3e3f4 − e2f3e4 − f3u12 + e2f3u12
f2f4(e2 − 1)

,

y =
f2f3 − e2f4 − e3f4 + f2f3e4 − f2f3u21 + f2

3f3u21
f4(e2 − 1)

,

z = −f3u12
f2f4

,

which makes R6 = R7 = O, and hence R5 = O. If we assume otherwise, we get other
sets of (uij , pij , x, y, z), which also make R5 = R6 = R7 = O.

Now we choose a set (vij , qij , x, y, z) and a set (uij , pij , x, y, z), examine their
compatibility, and then check the remaining relation R1. If we choose the two sets
given above, we come to

(f4, f5) = (f2, f1), (f4, f5) = (−f2,−f1).

It turns out that both cases give irreducible representations. We choose the first one.
In this case, the eigenvalues of M0

−1 are calculated as

e1e2, e1e2,
A+
√
B

C
,
A−
√
B

C
,

where A,B,C are polynomials in f1, f2, f3 and u12. In particular, B is quadratic in
u12. In order to uniformize these eigenvalues, we set

u12 =
e2(f3 − 1)(e1 + g)(e2f3 + g)

(e1 − 1)(e2 − 1)f3g
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with a new parameter g. Then the eigenvalues of M0
−1 are

e1e2, e1e2, g
2,
e1

2e2
2e3

g2
.

In this case, we have

M3 = I4 + (aij), M4 = (bij), M5 = (cij) (7.2)

with

a11 = a12 = a13 = a14 =
(f3 − 1)(g + 1)(e1e2f3 + g)

(e1 − 1)(e2 − 1)g
,

a21 = a22 = a23 = a24 = − (f3 − 1)(e1f3 + g)(e2 + g)

(e1 − 1)(e2 − 1)g
,

a31 = a32 = a33 = a34 = − (f3 − 1)(e1 + g)(e2f3 + g)

(e1 − 1)(e2 − 1)g
,

a41 = a42 = a43 = a44 =
(f3 − 1)(f3 + g)(e1e2 + g)

(e1 − 1)(e2 − 1)g
,

b11 = 1 +
(e2 − f3)(g + 1)(e1e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

b12 = b14 = −e2(f3 − 1)(g + 1)(e1e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

b13 = b11 − 1,

b21 = b23 =
(f3 − 1)(e1f3 + g)(e2 + g)

(e1 − 1)(e2 − 1)f3g
,

b22 = e2 +
(e2f3 − 1)(e1f3 + g)(e2 + g)

(e1 − 1)(e2 − 1)f3g
,

b24 = b22 − e2,

b31 =
(f3 − e2)(e1 + g)(e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

b32 = b34 =
e2(f3 − 1)(e1 + g)(e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

b33 = 1 + b31,

b41 = b43 = − (f3 − 1)(f3 + g)(e1e2 + g)

(e1 − 1)(e2 − 1)f3g
,

b42 = − (e2f3 − 1)(f3 + g)(e1e2 + g)

(e1 − 1)(e2 − 1)f3g
,

b44 = e2 + b42,
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c11 = 1 +
(e1 − f3)(g + 1)(e1e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

c12 = c11 − 1,

c13 = c14 = −e1(f3 − 1)(g + 1)(e1e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

c21 =
(f3 − e1)(e1f3 + g)(e2 + g)

(e1 − 1)(e2 − 1)f3g
,

c22 = 1 + c21,

c23 = c24 =
e1(f3 − 1)(e1f3 + g)(e2 + g)

(e1 − 1)(e2 − 1)f3g
,

c31 = c32 =
(f3 − 1)(e1 + g)(e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

c33 = e1 +
(e1f3 − 1)(e1 + g)(e2f3 + g)

(e1 − 1)(e2 − 1)f3g
,

c34 = c33 − e1,

c41 = c42 = − (f3 − 1)(f3 + g)(e1e2 + g)

(e1 − 1)(e2 − 1)f3g
,

c43 = − (e1f3 − 1)(f3 + g)(e1e2 + g)

(e1 − 1)(e2 − 1)f3g
,

c44 = e1 + c43.

We denote by ρ(1) the representation determined by the above (M1,M2,M3,M4,M5).
Note that, in deriving the entries ofM3,M4,M5, we used square roots of e1, e2, . . . , e5,
while the result is written in terms of e1, e2, a square root of e3 and a square root of
an eigenvalue of M0

−1.
In this way, we obtain a lot of representations. We find that all representations thus

obtained are reduced to one of four representations ρ(1), ρ(2), ρ(3), ρ(4) given below.
Let σ, τ be generators of Z2 defined by

σ : f3 7→ −f3, τ : g 7→ −g,

and set

G4 = 〈σ, τ〉 = (Z2)2, (7.3)

which is Klein’s four-group. Then we set

M
(2)
j = σ(Mj),

M
(3)
j = τ(Mj),

M
(4)
j = στ(Mj)
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for j = 3, 4, 5. Now we define ρ(2), ρ(3), ρ(4) by

ρ(2) = (M1,M2,M
(2)
3 ,M

(2)
4 ,M

(2)
5 ),

ρ(3) = (M1,M2,M
(3)
3 ,M

(3)
4 ,M

(3)
5 ),

ρ(4) = (M1,M2,M
(4)
3 ,M

(4)
4 ,M

(4)
5 ),

(7.4)

where M1,M2 are the matrices in (6.2). Then it is evident that the Galois group G4

acts faithfully on the set {ρ(1), ρ(2), ρ(3), ρ(4)}. Since the eigenvalues of M0
−1 do not

change for the action of G4, the eigenvalues of the local monodormy at L∞ for every
ρ(k) are

1

e1e2
,

1

e1e2
,

1

g2
,

g2

e12e22e3
.

For each representation ρ(k), the eigenvalues of the local monodromies at Lx∞ and at
Ly∞ coincide, and are given as follows:

ρ(1) : −1

g
,−1

g
,− g

e1e2f3
,− g

e1e2f3
,

ρ(2) : −1

g
,−1

g
,

g

e1e2f3
,

g

e1e2f3
,

ρ(3) :
1

g
,

1

g
,

g

e1e2f3
,

g

e1e2f3
,

ρ(4) :
1

g
,

1

g
,− g

e1e2f3
,− g

e1e2f3
.

Then we can distinguish the four representations by these local monodromies.

Theorem 7.1. Let
ρ : π1(P2 \ S(1), b)→ GL(4,C)

be an irreducible anti-homomorphism with spectral type (2, 2) at S1, S2, S4, S5 and
(3, 1) at S3. We assume that the eigenvalues of the local monodromies at S1, S2, S4, S5

are given by (1, 1, e1, e1), (1, 1, e2, e2), (1, 1, e4, e4), (1, 1, e5, e5), respectively, and at S3

by (1, 1, 1, e3), where ej ∈ C \ {0, 1} (1 ≤ j ≤ 5). Then ρ is, up to multiplications,
isomorphic to one of ρ(k) (1 ≤ k ≤ 4) given by (6.2), (7.2), (7.4), where f3 is a square
root of e3. For these representations,

e1 = e5, e2 = e4

hold. The local monodromy at L∞ is given by

diag

[
1

e1e2
,

1

e1e2
,

1

g2
,

g2

e12e22e3

]
.

The Galois group G4 given by (7.3) acts faithfully on the set {ρ(1), ρ(2), ρ(3), ρ(4)}.
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8. CONCLUSION AND REMARKS

Theorems 5.1, 6.1 and 7.1 show that the monodromy representations for Appell’s
hypergeometric functions with singular locus

S(1) = {xy(x− 1)(y − 1)(x− y) = 0} ∪ L∞

are almost rigid. Namely they are determined by the local monodromies up to a finite
number of possibilities. It is remarkable that these representations are determined by
prescribing only the local monodromies at singular loci in C2. The local monodromy
at the line at infinity in P2 or in P1 × P1 is uniquely determined.

It is also remarkable that these representations are strictly rigid if they are con-
sidered in P1 × P1. Thus the rigidity depends on compactifications of C2. This fact
can be explained by the correspondence of the parameters and the eigenvalues of the
local monodromies. For the F1 case, as listed in (3.4), the eigenvalues of the local
monodromy at each component are determined by the parameters (a, b, b′, c). If we
change the parameters to

(
a, b+

1

2
, b′ +

1

2
, c+

1

2

)
,

the eigenvalues at S1, . . . , S5, L∞ are unchanged, while, the eigenvalues at Lx∞, Ly∞,
e(b) and e(b′) change to −e(b) and −e(b′). Thus the two distinct representations,
which can be distinguished by the local monodromies in P1 × P1, give the same local
monodromies in P2. For F2 case, we consider the change of the parameters

(a, b, b′, c, c′) 7→
(
a, b+

1

2
, b′ +

1

2
, c, c′

)
.

For the F4 case, we consider the changes of the parameters generated by

(a, b, c, c′) 7→
(
a+

1

2
, b, c, c′

)
,

(a, b, c, c′) 7→
(
a, b+

1

2
, c, c′

)
,

which form the group (Z2)2.
We also note that the relations among the eigenvalues of the local monodromies,

such as e1e2 = e4e5 for F1 or e1 = e5, e2 = e4 for F4, are consequences of the
existence of irreducible representations. In other words, these relations are derived
from the spectral type of the representation. Hence our formulation of the problem
given in section 4 works well for the study of the rigidity in higher dimensional cases.

Here we remark on the irreducibility of the representations given in Theorems
5.1, 6.1 and 7.1. For each ρ(k), two matrices M1 and M2 are diagonal. Then, if
ρ(k) is reducible, the invariant subspace is spanned by some of the unit vectors
t(0, . . . , 1, . . . , 0). Hence we can show the irreducibility by checking the non-vanishing
of off-diagonal entries of M3 or M4 or M5. For example, if no off-diagonal entry of
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M3 (or M4 or M5) vanishes, the representation is irreducible. We can obtain an exact
condition for the irreducibility in the same way as in [6].

In this paper, we started from the spectral types of existing representations, and
looked for representations with the spectral types. It is not known for what spectral
types irreducible representations exist. This problem may be concerned with defining
the index of rigidity in higher dimensional cases.

On the other hand, we can obtain infinitely many representations of π1(P2 \ S(1))
from rigid Fuchsian ordinary differential equations with four singular points by using
the middle convolution defined by [4]. Also, the middle convolution connects the
monodromy representations for F2 and F4 with the one for F1. It would be interesting
to study the representations of π1(P2 \ S(1)) by the middle convolution.

In the famous paper [3] Gérard and Levelt showed that, if the singular locus con-
sists of normally crossing hyperplanes, any solution of the Pfaffian system becomes
elementary. We can give another proof for this assertion by considering the mon-
odromy. Namely, if the hyperplanes of the singular locus are normally crossing, the
fundamental group becomes abelian, so that any representation becomes reducible.
The singular locus S(1) is chosen by Gérard-Levelt as the simplest hyperplane ar-
rangement which gives a non-elementary Pfaffian system. Now we recognize that
the topology of the singular locus fairly determines the analytic behaviors of the
solutions. Then we consider it important to characterize hypersurfaces such that the
fundamental groups of the complement space admit irreducible representations. This
problem will be fundamental in the theory of hyperplane arrangements or in algebraic
geometry.
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