PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Flotation of molybdenite in the presence of microemulsified collector

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper molybdenite flotation using microemulsified collector was reported. The flotation performance of microemulsified collector and conventional diesel was compared. This study is a prelimi-nary investigation which uses pure molybdenite mineral in a modified Hallimond tube. The pH tests showed that the highest recovery of molybdenite in the presence of diesel and microemulsion was ob-tained at pH=6, reaching the recoveries of 93% and 90%, respectively. In the case of obtaining similar results, it was observed that the microemulsion consumption was lower in comparison to diesel. In the flotation tests with microemulsified collector the recovery slightly decreased because too large collector amount caused formation of more unstable bubbles. The contact angle measurements showed that the microemulsified collector was more effective for increasing the hydrophobicity of molybdenite surface. An adsorption model was proposed and it was suggested that the non-ionic surfactant present in the mi-croemulsified collector formed a continuous bimolecular layer, resulting in the increased surface hydro-phobicity. The accomplishment of this research demonstrated the viability of the use of microemulsified collector in molybdenite flotation, attempting to simplify the molybdenite flotation process, especially replace the conventional emulsified collector with high energy consumption and difficult storage.
Słowa kluczowe
Rocznik
Strony
333--341
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Chemical and Environmental Engineering College, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • Chemical and Environmental Engineering College, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • Chemical and Environmental Engineering College, Shandong University of Science and Technology, Qingdao 266590, China
Bibliografia
  • AKTAS Z., WOODBURN E., 1994. The adsorption behaviour of nonionic reagents on two low rank British coals. Minerals engineering, 7, 1115-1126.
  • ANSARI A., PAWLIK M., 2007a. Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part I. Adsorption studies. Minerals engineering, 20, 600-608.
  • ANSARI A., PAWLIK M., 2007b. Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part II. Hallimond tube flotation. Minerals engineering, 20, 609-616.
  • BELLOCQ A., ROUX D., 1987. Phase diagram and critical behavior of a quaternary microemulsion system. CRC Press: Boca Raton, FL.
  • CHANDER S., FUERSTENAU D., 1972. On the natural floatability of molybdenite. Trans. AIME, 252, 62-69.
  • FUERSTENAU D., METZGER P., SEELE G., 1957. How to use this modified Hallimond tube for better flotation testing. Eng. Min. J, 158, 93-95.
  • FURLONG D., ASTON J., 1982. Adsorption of polyoxyethylated nonyl phenols at silica/aqueous solution interfaces. Colloids and Surfaces, 4, 121-129.
  • GELLAN A., ROCHESTER C.H., 1985. Adsorption of n-alkylpolyethylene glycol non-ionic surfactants from aqueous solution on to silica. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 81, 2235-2245.
  • GERSON A.R., SMART R.S.C., LI J., KAWASHIMA N., WEEDON D., TRIFFETT B., BRADSHAW D., 2012. Diagnosis of the surface chemical influences on flotation performance: Copper sulfides and molybdenite. International Journal of Mineral Processing, 106, 16-30.
  • GILES C.H., D'SILVA A.P., EASTON I.A., 1974a. A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. Journal of Colloid and Interface Science, 47, 766-778.
  • GILES C.H., SMITH D., HUITSON A., 1974b. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47, 755-765.
  • HALLIMOND A., 1944. Laboratory apparatus for flotation tests. Min. Mag, 70, 87-91.
  • HE T., WAN H., SONG N., GUO L. 2011. The influence of composition of nonpolar oil on flotation of molybdenite. Minerals Engineering, 24, 1513-1516.
  • HUIBERS P.D., 1996. Surfactant self-assembly, kinetics and thermodynamics of micellar and microemulsion systems, University of Florida.
  • KOWALCZUK P.B., DRZYMALA J., 2011, Contact angle of bubble with an immersed-in-water particle of different materials, Ind. Eng. Chem. Res. 50(7), 4207–4211
  • LEVITZ P., EL MIRI A., KERAVIS D., VAN DAMME H., 1984a. Adsorption of nonionic surfactants at the solid—solution interface and micellization: A comparative fluorescence decay study. Journal of colloid and interface science, 99, 484-492.
  • LEVITZ P., VAN DAMME H., KERAVIS D., 1984b. Fluorescence decay study of the adsorption of nonionic surfactants at the solid-liquid interface. 1. Structure of the adsorption layer on a hydrophilic solid. The Journal of Physical Chemistry, 88, 2228-2235.
  • LI L., LU X.-J., 2011. Research and application of molybdenite collector. China Mining Magazine, 3, 019.
  • LI L., LU X., QIU J., LIU D., 2013. Effect of microemulsified collector on froth flotation of coal. Journal of the Southern African Institute of Mining and Metallurgy, 113, 877-880.
  • PEARSE M., 2005. An overview of the use of chemical reagents in mineral processing. Minerals Engineering, 18, 139-149.
  • POLAT M., POLAT H., CHANDER S., 2003. Physical and chemical interactions in coal flotation. International Journal of Mineral Processing, 72, 199-213.
  • RONZIO R., 1970. The role of surfactants in the flotation of molybdenite at climax. Journal of the American Oil Chemists Society, 47, 504A-504A.
  • RUBIO J., CAPPONI F., RODRIGUES R.T., MATIOLO E., 2007. Enhanced flotation of sulfide fines using the emulsified oil extender technique. International Journal of Mineral Processing, 84, 41-50.
  • SONG S., ZHANG X., YANG B., LOPEZ-MENDOZA A., 2012. Flotation of molybdenite fines as hydrophobic agglomerates. Separation and Purification Technology, 98, 451-455.
  • VOLLMER D., VOLLMER J., 2001. Bending free energy and spontaneous curvature for micelles and microemulsions with weak and strong surfactants. The European Physical Journal E, 4, 153-159.
  • WINSOR P., 1968. Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions. Chemical reviews, 68, 1-40.
  • YIN W.-Z., ZHANG L.-R., FENG X., 2010. Flotation of Xinhua molybdenite using sodium sulfide as modifier. Transactions of Nonferrous Metals Society of China, 20, 702-706.
  • YUAN Z., ZHAO L., HAN Y., LIU X., LIANG Y. 2007. Study on tailing water treatment of Chaoyang Xinhua Molybdenum Mine with coagulation. Mining and Metallurgy, 16, 57-60.
  • ZHANG B.-Y., ZHONG H., 2010. Review on Research Progress of Molybdenite Flotation and its Collectors. Conservation and Utilization of Mineral Resources, 3, 017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b92cc515-14c9-43bc-9f05-e96a97215eda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.