PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern materials used for environmental barrier coatings – a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nowoczesne materiały stosowane na powłoki EBC – przegląd
Języki publikacji
EN
Abstrakty
EN
In this article, the materials used for EBC coatings, representing next stage in the development of heat-resistant layers, and thermal barrier coatings are reviewed. In the introduction, the design of gas turbine is characterized, as well as the materials used for the hot part components and the requirements for protective coatings. Ceramic materials that can be an alternative to currently used nickel superalloys for turbine blades are also described. The requirements for EBC coatings were analyzed and then the various types of EBC coatings were characterized, as well as their degradation mechanisms.
PL
W artykule dokonano krótkiego przeglądu materiałów stosowanych na powłoki EBC (environmental barrier coatings) reprezentujących kolejny etap zaawansowania warstw żaroodpornych i powłokowych barier cieplnych (TBC – thermal barrier coatings). Opisano konstrukcję turbiny gazowej i materiały stosowane do produkcji elementów części gorącej oraz wymagania w zakresie powłok ochronnych. Opisane zostały również materiały ceramiczne, które mogą być alternatywą dla obecnie stosowanych nadstopów niklu używanych do wytwarzania łopatek turbin. Przeprowadzono analizę wymagań dotyczących powłok EBC, a następnie scharakteryzowano poszczególne rodzaje tych powłok, a także mechanizmy ich degradacji.
Rocznik
Tom
Strony
104--112
Opis fizyczny
Bibliogr. 106 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology, Research and Development Laboratory for Aerospace Materials, Żwirki i Wigury 4, Rzeszów, Poland
autor
  • Rzeszow University of Technology, Research and Development Laboratory for Aerospace Materials, Żwirki i Wigury 4, Rzeszów, Poland
autor
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Powstanców Warszawy 12, Rzeszów, Poland
autor
  • Rzeszow University of Technology, Research and Development Laboratory for Aerospace Materials, Żwirki i Wigury 4, Rzeszów, Poland
autor
  • Rzeszow University of Technology, Research and Development Laboratory for Aerospace Materials, Żwirki i Wigury 4, Rzeszów, Poland
Bibliografia
  • [1] A. Nasiri, F. Bayat, S. Mobayen, H. Hosseinnia. 2021. “Gas Turbines Power Regulation Subject to Actuator Constraints Disturbances and Measurement Noises”. IEEE Access 9: 40155–40164. DOI: 10.1109/access.2021.3064893.
  • [2] https://www.cast-safety.org/pdf/3_engine_fundamentals.pdf (7.05.2022).
  • [3] K. Singh. 2014. “Advanced Materials for Land Based Gas Turbines”. Transactions of the Indian Institute of Metals 67(5): 601–615. DOI: 10.1007/s12666-014-0398-3.
  • [4] A.W. James, S. Rajagopalan. 2014. Gas Turbines: Operating Conditions, Components and Material Requirements. In: A. Shirzadi, S. Jackson (eds.). Structural Alloys for Power Plants: Operational Challenges and High-Temperature Materials. Woodhead Publishing Series in Energy: No. 45. Amsterdam– Tokyo: Woodhead Publishing. DOI: 10.1533/9780857097552.1.3.
  • [5] P. Pędrak, M. Drajewicz, K. Dychtoń, A. Nowotnik. 2016. “Microstructure and Thermal Characteristics of SiC-Al2O3-Ni Composite for High-Temperature Application”. Journal of Thermal Analysis and Calorimetry 125(3): 1353–1356. DOI: 10.1007/s10973-016-5608-2.
  • [6] Xuezheng Dou, Liwu Jiang, Jinxia Song, Dinggang Wang. 2023. “Exploring Low Cycle Fatigue Anisotropy and the Failure Mechanism of the DD412 Single Crystal Alloy for Aeroengines”. International Journal of Fatigue 169: 107487. DOI: 10.1016/j.ijfatigue.2022.107487.
  • [7] M.F. Moreira, L.B. Fantin, C.R.F. Azevedo. 2021. “Microstructural Characterization of Ni-Base Superalloy As-Cast Single Crystal (CMSX-4)”. International Journal of Metalcasting 15(2): 676–691. DOI: 10.1007/s40962-020-00496-1.
  • [8] S. Zheng, Y. Song, G. Xie, B. Sundén. 2015. “An Assessment of Turbulence Models for Predicting Conjugate Heat Transfer for a Tubine Vane with Internal Cooling Channels”. Heat Transfer Research 46(11): 1039–1064. DOI: 10.1615/HeatTransRes.2015007514.
  • [9] M. Góral, M. Pytel, P. Sosnowy, S. Kotowski, M. Drajewicz. 2013. “Microstructural Characterization of Thermal Barrier Coatings Deposited by APS and LPPS Thin Film Methods”. Solid State Phenomena 197: 1–5. DOI: 10.4028/www.scientific.net/SSP.197.1.
  • [10] G. Moskal, M. Mikuśkiewicz, A. Jasik. 2019. “Thermal Diffusivity Measurement of Ceramic Materials Used in Spraying of TBC Systems: The Influence of Materials’ Morphology and (Re)Manufacturing Processes”. Journal of Thermal Analysis and Calorimetry 138(6): 4261–4269. DOI: 10.1007/s10973-019-08589-8.
  • [11] K. Mondal, L. Nuñez III, C.M. Downey, I.J. van Rooyen. 2021. “Thermal Barrier Coatings Overview: Design, Manufacturing, and Applications in High-Temperature Industries”. Industrial and Engineering Chemistry Research 60(17): 6061–6077. DOI: 10.1021/acs.iecr.1c00788.
  • [12] P. Pędrak, A. Nowotnik, M. Góral, K. Kubiak, M. Drajewicz, J. Sieniawski. 2015. “The Technology of TBC Deposition by EB-PVD Method”. Solid State Phenomena 227: 377–380. DOI: 10.4028/www.scientific.net/SSP.227.377.
  • [13] G. Mauer. 2022. “Development of Plasma Parameters for the Manufacture of MCrAlY Bond Coats by Low-Pressure Plasma Spraying Using a Cascaded Torch”. Advanced Engineering Materials 24(11): 2200856. DOI: 10.1002/adem.202200856.
  • [14] M. Góral, K. Ochał, T. Kubaszek, M. Drajewicz. 2020, “The Influence of Deposition Technique of Aluminide Coatings on Oxidation Resistance of Different Nickel Superalloys”. Materials Today: Proceedings 33(4): 1746–1751. DOI: 10.1016/j.matpr.2020.04.863.
  • [15] Qiu Panpan, Shu Xiaoyong, Hu Linli, Yang Tao, Fang Yuqing. 2022. “Research Progress of Pt-Modified Aluminide Coating on Nickel-Base Superalloys”. Journal of the Chinese Society of Corrosion and Protection 42(2): 186–192. DOI: 10.11902/1005.4537.2021.042.
  • [16] M. Góral, M. Pytel, W. Cmela, M. Drajewicz. 2015. “The Influence of Overaluminizing on TGO Formation on Thermal Barrier Coatings Deposited by Low Pressure Plasma Spraying and Chemical Vapour Deposition Methods on Rene 80 Nickel Superalloy”. Solid State Phenomena 227: 321–324. DOI: 10.4028/www.scientific.net/SSP.227.321.
  • [17] Rida Zhao, Shengyang Pang, Chenglong Hu, Jian Li, Bin Liang, Sufang Tang, Hui-Ming Cheng. 2023. “Fabrication of C/SiC Composites by Siliconizing Carbon Fiber Reinforced Nanoporous Carbon Matrix Preforms and Their Properties”. Journal of the European Ceramic Society 43(2): 273–282. DOI: 10.1016/j.jeurceramsoc.2022.10.028.
  • [18] J.A. DiCarlo. 2015. Advances in SiC/SiC Components for Aero-Propulsion. In: N.P. Bansal, J. Lamon (eds.). Ceramic Matrix Composites: Materials, Modeling and Technology. Hoboken, New Jersey: John Wiley and Sons.
  • [19] M. Dada, P. Popoola, N.R. Mathe, S.O. Adeosun, S.L. Pityana, O. Aramide, N. Malatji, Th. Lengopeng, A. Ayodeji. 2021. Recent Advances of High Entropy Alloys: High Entropy Superalloys. In: J. Kitagawa (ed.). Advances in High-Entropy Alloys: Materials Research, Exotic Properties and Applications. London: IntechOpen.
  • [20] F. Zivic, N. Busarac, S. Milenkovic, N. Grujović. 2021. General Overview and Applications of Ceramic Matrix Composites (CMCs). In: D. Brabazon (ed.). Encyclopedia of Materials: Composites, vol. 2. Elsevier.
  • [21] K. Takeishi. 2022. “Evolution of Turbine Cooled Vanes and Blades Applied for Large Industrial Gas Turbines and Its Trend toward Carbon Neutrality”. Energies 15(23): 8935. DOI: 10.3390/en15238935.
  • [22] Qianjun Yan, Xin Yang, Xiaxiang Zhang, Sen Wu, Hongtao Li, Qizhong Huang. 2023. “Effect of Graphitization Temperature on Microstructure, Mechanical and Ablative Properties of C/C Composites with Pitch and Pyrocarbon Dual-Matrix”. Ceramics International 49(2): 2860–2870. DOI: 10.1016/j.ceramint.2022.09.269.
  • [23] C. Morel, E. Baranger, J. Lamon, J. Braun, C. Lorrette. 2023. “The Influence of Internal Defects on the Mechanical Behavior of Filament Wound SiC/SiC Composite Tubes under Uniaxial Tension”. Journal of the European Ceramic Society 43(5): 1797–1807. DOI: 10.1016/j.jeurceramsoc.2022.12.040.
  • [24] C. Bach, F. Wehner, J. Sieder-Katzmann. 2022. “Investigations on an All-Oxide Ceramic Composites Based on Al2O3 Fibres and Alumina-Zirconia Matrix for Application in Liquid Rocket Engines”. Aerospace 9(11): 684. DOI: 10.3390/aerospace9110684.
  • [25] K.N. Lee. 2018. “Yb2Si2O7 Environmental Barrier Coatings with Reduced Bond Coat Oxidation Rates via Chemical Modifications for Long Life”. Journal of the American Ceramic Society 102(3): 1507–1521. DOI: 10.1111/jace.15978.
  • [26] E. Bakan, D. Marcano, D. Zhou, Y.J. Sohn, G. Mauer, R. Vaßen. 2017. “Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study”. Journal of Thermal Spray Technology 26(1): 1011–1024. DOI: 10.1007/s11666-017-0574-1.
  • [27] Xiaoxu Lü, Longbiao Li, Jiajia Sun, Jinhua Yang, Jian Jiao. 2023. “Microstructure and Tensile Behavior of (BN/SiC)n Coated SiC Fibers and SiC/SiC Minicomposites”. Journal of the European Ceramic Society 43(5): 1828–1842. DOI: 10.1016/j.jeurceramsoc.2022.12.032.
  • [28] Maolin Chen, Ling Pan, Xiaodong Xia, Wei Zhou, Yang Li. 2022. “Boron Nitride (BN) and BN Based Multiple-Layer Interphase for SiCf /SiC Composites: A Review”. Ceramics International 48(23), Part A: 34107–34127. DOI: 10.1016/j.ceramint.2022.07.021.
  • [29] V. Savari, Z. Balak, V. Shahedifar. 2022. “Combined and Alone Addition Effect of Nano Carbon Black and SiC on the Densification and Fracture Toughness of SPS-Sintered ZrB2”. Diamond and Related Materials 128: 109244. DOI: 10.1016/j.diamond.2022.109244.
  • [30] F.W. Zok, P.T. Maxwell, K. Kawanishi, E.B. Callaway. 2020. “Degradation of a SiC-SiC Composite in Water Vapor Environments”. Journal of the American Ceramic Society 103(3): 1927–1941. DOI: 10.1111/jace.16838.
  • [31] Jianwei Dai, Limin He, Zhenhua Xu, Zaoyu Shen, Zhen Zhen, Guanxi Liu, Rende Mu. 2022. “Oxidation Behavior of SiCf /SiC Minicomposites with Multilayered (BN/SiC)n Interfacial Coatings under Humid Environment”. Journal of Materials Engineering and Performance 31(12): 10343–10353. DOI: 10.1007/ s11665-022-07046-2.
  • [32] H.E. Eaton, G.D. Linsey. 2002. “Accelerated Oxidation of SiC CMC’s by Water Vapor and Protection via Environmental Barrier Coating Approach”. Journal of the European Ceramic Society 22(14–15): 2741–2747. DOI: 10.1016/S0955-2219(02)00141-3.
  • [33] Fangcheng Cao, Wei Hao, Xin Wang, Fangwei Guo, Xiaofeng Zhao, N. Rohbeck, Ping Xiao. 2017. “Effects of Water Vapor on the Oxidation and the Fracture Strength of SiC Layer in TRISO Fuel Particles”. Journal of the American Ceramic Society 100(5): 2154–2165. DOI: 10.1111/jace.14723.
  • [34] D.C. Faucett, S.R. Choi. 2011. “Strength Degradation of Oxide/Oxide and SiC/SiC Ceramic Matrix Composites in CMAS and CMAS/Salt Exposures”. Proceedings of the ASME Turbo Expo: Turbine Technical Conference and Exposition. Vol. 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Wind Turbine Technology: 497–504. DOI: 10.1115/GT2011-46771.
  • [35] N.P. Bansal, J. Lamon (eds.). 2014. Ceramic Matrix Composites: Materials, Modeling and Technology. Hoboken, New Jersey: John Wiley and Sons.
  • [36] M. Suzuki, M. Shahien, K. Shinoda, J. Akedo. 2022. “The Current Status of Environmental Barrier Coatings and Future Direction of Thermal Spray Process”. Materials Transactions 63(8): 1101–1111. DOI: 10.2320/matertrans.MTT2021003.
  • [37] H.E. Eaton, G.D. Linsey, E.Y. Sun, K.L. More, J.B Kimmel, J.R. Price, N. Miriyala. 2000. “EBC Protection of SiC/SiC Composites in the Gas Turbine Combustion Environment: Continuing Evaluation and Refurbishment Considerations”. Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Vol. 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award. Paper No.: 2000-GT-0631, V004T02A018. DOI: 10.1115/2001-GT-0513.
  • [38] Xin’gang Luan, Jun Zhang, Laifei Cheng. 2012. “Effects of Water Vapor on Corrosion Behaviors of C/SiC in Oxidizing Atmosphere Containing Na2SO4 Vapor”. Composites Part B: Engineering 43(8): 2968–2972. DOI: 10.1016/j.compositesb.2012.05.047.
  • [39] K. Lee, Dongming Zhu, V.L. Wiesner, M. van Roode, T. Kashyap. 2016. “Environmental Barrier Coatings for Ceramic Matrix Composites – An Overview”. Turbine Forum: Advanced Coating for High Temperatures. Nice, France.
  • [40] K.N. Lee, D.S. Fox, R.C. Robinson, N.P. Bansal. 2001. Environmental Barrier Coatings for Silicon-Based Ceramics. In: W. Krenkel, R. Naslain, H. Schneider (eds.). High Temperature Ceramic Matrix Composites. Weinheim: Wiley-VCH.
  • [41] K. Ramachandran, B. Chaffey, C. Zuccarini, J.C. Bear, D.D. Jayaseelan. 2023. “Experimental and Mathematical Modelling of Corrosion Behaviour of CMAS Coated Oxide/Oxide CMCs”. Ceramics International 49(3): 4213–4221. DOI: 10.1016/j.ceramint.2022.09.294.
  • [42] N. Yunoki, S. Kitaoka, H. Kawamoto. 1999. “High Temperature Corrosion of Oxide-Coated SiC in Water Vapor Atmosphere”. 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings 20(4): 363–370. DOI: 10.1002/9780470294574.ch42.
  • [43] K.L. More, P.F. Tortorelli, L.R. Walker. 2001.“Effects of High Water Vapor Pressures on the Oxidation of SiC-Based Fiber-Reinforced Composites”. Materials Science Forum 369–372: 385–394. DOI: 10.4028/www.scientific.net/msf.369- 372.385.
  • [44] D.L. Poerschke, D.D. Hass, S. Eustis, G. Seward, J.S. Van Sluytman, C.G. Levi. 2015. “Stability and CMAS Resistance of Ytterbium-Silicate/Hafnate EBCs/ TBC for SiC Composites”. Journal of the American Ceramic Society 98(1): 278– 286. DOI: 10.1111/jace.13262.
  • [45] D. Tejero-Martin, C. Bennett, T. Hussain. 2021. “A Review on Environmental Barrier Coatings: History, Current State of the Art and Future Developments”. Journal of the European Ceramic Society 41(3): 1747–1768. DOI: 10.1016/j.jeurceramsoc.2020.10.057.
  • [46] Y. Arai, R. Inoue. 2019. “Detection of Small Delamination in Mullite/Si/SiC Model EBC System by Pulse Thermography”. Journal of Advanced Ceramics 8(3): 438–447. DOI: 10.1007/s40145-019-0327-3.
  • [47] Yixiu Luo, Luchao Sun, Jiemin Wang, Zhen Wu, Xirui Lv, Jingyang Wang. 2018. “Material-Genome Perspective towards Tunable Thermal Expansion of Rare-Earth Di-Silicates”. Journal of the European Ceramic Society 38(10): 3547–3554. DOI: 10.1016/j.jeurceramsoc.2018.04.021.
  • [48] F. Abdi, C. Godines, W. Troha, G. Morscher. 2011. “Environmental Degradation and Micro-Crack Formation in Ceramic Matrix Composites with EBC for Aircraft Engine Applications”. International SAMPE Technical Conference.
  • [49] K.A. Kane, E. Garcia, S. Uwanyuze, M. Lance, K.A. Unocic, S. Sampath, B.A. Pint. 2021. “Steam Oxidation of Ytterbium Disilicate Environmental Barrier Coatings with and without a Silicon Bond Coat”. Journal of the American Ceramic Society 104(5): 2285–2300. DOI: 10.1111/jace.17650.
  • [50] Bowen Lv, Zhaoliang Qu, Baosheng Xu, Yiguang Wang, Daining Fang. 2021. “Water Vapor Volatilization and Oxidation Induced Surface Cracking of Environmental Barrier Coating Systems: A Numerical Approach”. Ceramics International 47(12): 16547–16554. DOI: 10.1016/j.ceramint.2021.02.225.
  • [51] K.L. More, P.L. Tortorelli, L.R. Walker, J.B. Kimmel, N. Miriyala, J.R. Price, H.E. Eaton, E.Y. Sun, G.D. Linsey. 2002. “Evaluating Environmental Barrier Coatings on Ceramic Matrix Composites after Engine and Laboratory Exposures”. Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Vol. 4: Turbo Expo 2002, Parts A and B: 155–162. DOI: 10.1115/GT2002-30630.
  • [52] J. Xu, V. Sarin, S. Basu. 2012. “Stability Study of EBC/TBC Hybrid System on Si-Based Ceramics in Gas Turbines”. MRS Proceedings 1519: 21–27. DOI: 10.1557/opl.2012.1717.
  • [53] V.L. Wiesner, B.J. Harder, N.P. Bansal. 2018. “High-Temperature Interactions of Desert Sand CMAS Glass with Yttrium Disilicate Environmental Barrier Coating Material”. Ceramics International 44(18): 22738–22743. DOI: 10.1016/j.ceramint.2018.09.058.
  • [54] A. Ghoshal, M.J. Walock, M. Murugan, C. Mock, L. Bravo, M. Pepi, A. Nieto, A. Wright, J. Luo, N. Jain, A. Flatau, L. Fehrenbacher. 2019. “Governing Parameters Influencing CMAS Adhesion and Infiltration into Environmental/ Thermal Barrier Coatings in Gas Turbine Engines”. Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Vol. 6: Ceramics; Controls, Diagnostics, and Instrumentation; Education; Manufacturing Materials and Metallurgy. Paper No.: GT2019-92000, V006T02A016V006T02A016. DOI: 10.1115/GT2019-92000.
  • [55] K.N. Lee. 2015. Environmental Barrier Coatings for SiCF/SiC. In: N.P. Bansal, J. Lamon (eds.). Ceramic Matrix Composites: Materials, Modeling and Technology. Hoboken, New Jersey: John Wiley and Sons.
  • [56] C.V. Cojocaru, D. Lévesque, C. Moreau, R.S. Lima. 2013. “Performance of Thermally Sprayed Si/Mullite/BSAS Environmental Barrier Coatings Exposed to Thermal Cycling in Water Vapor Environment”. Surface and Coatings Technology 216: 215–223. DOI: 10.1016/j.surfcoat.2012.11.043.
  • [57] Jie Xiao, Qiaomu Liu, Jingchen Li, Hongbo Guo, Huibin Xu. 2019. “Microstructure and High-Temperature Oxidation Behavior of Plasma-Sprayed Si/Yb2SiO5 Environmental Barrier Coatings”. Chinese Journal of Aeronautics 32(8): 1994–1999. DOI: 10.1016/j.cja.2018.09.004.
  • [58] N. Rohbeck, P. Morrell, P. Xiao. 2019. “Degradation of Ytterbium Disilicate Environmental Barrier Coatings in High Temperature Steam Atmosphere”. Journal of the European Ceramic Society 39(10): 3153–3163. DOI: 10.1016/j.jeurceramsoc.2019.04.034.
  • [59] Y. Arai, M. Sato, Y. Kagawa. 2018. “Melting/Solidification of Si Bond Coat Layer in Oxide/Si/RB-SiC Environmental Barrier Coating System”. Advanced Engineering Materials 20(12): 1800677. DOI: 10.1002/adem.201800677.
  • [60] N.L. Ahlborg, D. Zhu. 2013. “Calcium-Magnesium Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings”. Surface and Coating Technology 237: 79–87. DOI: 10.1016/j.surfcoat.2013.08.036.
  • [61] R.T. Bhatt, S.R. Choi, L.M. Cosgriff, D.S. Fox, K.N. Lee. 2008. “Impact Resistance of Environmental Barrier Coated SiC/SiC Composites”. Materials Science and Engineering: A 476(1–2): 8–19. DOI: 10.1016/j.msea.2007.04.067.
  • [62] Yongqiu Zhang, Binglin Zou, Xiaolong Cai, Ying Wang, Xueqiang Cao. 2020. “Hot Corrosion Behavior of Yb2Si2O7 Ceramic under NaVO3 Salt Attack”. Ceramics International 46(3): 2618–2623. DOI: 10.1016/j.ceramint.2019.09.070.
  • [63] S. Ueno, T. Ohji, H.T. Lin. 2008. “Recession Behavior of Yb2Si2O7 Phase under High Speed Steam Jet at High Temperatures”. Corrosion Science 50(1): 178– 182. DOI: 10.1016/j.corsci.2007.06.014.
  • [64] Chao Wang, Min Liu, Junli Feng, Xiaofeng Zhang, Chunming Deng, Kesong Zhou, Dechang Zeng, Shuangquan Guo, Ruimin Zhao, Shuanghua Li. 2020. “Water Vapor Corrosion Behavior of Yb2SiO5 Environmental Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition”. Coatings 10(4): 392. DOI: 10.3390/coatings10040392.
  • [65] Peng Jiang, Cheng Ye. 2020. “Recession of Environmental Barrier Coatings under High-Temperature Water Vapour Conditions: A Theoretical Model”. Materials 13(20): 4494. DOI: 10.3390/ma13204494.
  • [66] Hong-Fei Chen, Chi Zhang, Yu-Chen Liu, Peng Song, Wen-Xian Li, Guang Yang, Bin Liu. 2020. “Recent Progress in Thermal/Environmental Barrier Coatings and Their Corrosion Resistance”. Rare Metals 39(8): 498–512. DOI: 10.1007/s12598-019-01307-1.
  • [67] K.N. Lee. 2000. “Current Status of Environmental Barrier Coatings for Si- -Based Ceramics”. Surface and Coatings Technology 133–134(1): 1–7. DOI: 10.1016/S0257-8972(00)00889-6.
  • [68] J.R. Price, M. van Roode, C. Stala. 1992. “Ceramic Oxide-Coated Silicon Carbide for High Temperature Corrosive Environments”. Key Engineering Materials 72–74: 71–84. DOI: 10.4028/www.scientific.net/kem.72-74.71.
  • [69] https://www.aero-mag.com/the-hole-story/ (9.04.2022).
  • [70] Qing Hu, Yuncheng Wang, Xiaojun Guo, Yunwei Tu, Ruoyu Liu, Ge Song, Xiangrong Lu, Jingqi Huang, Mingjian Yuan, Jianing Jiang, Longhui Deng, Mingyi Xu, Shujuan Dong, Xueqiang Cao. 2022. “Oxidation Inhibition Behaviors of Environmental Barrier Coatings with a Si-Yb2SiO5 Mixture Layer for SiCf /SiC Composites at 1300°C”. Surface and Coatings Technology 438: 128421. DOI: 10.1016/j.surfcoat.2022.128421.
  • [71] N.A. Nasiri, N. Patra, M. Pezoldt, J. Colas, W.E. Lee. 2019. “Investigation of a Single-Layer EBC Deposited on SiC/SiC CMCs: Processing and Corrosion Behaviour in High-Temperature Steam”. Journal of Eurpean Ceramic Society 39(8): 2703–2711. DOI:10.1016/j.jeurceramsoc.2018.12.019.
  • [72] P. Sarin, W. Yoon, R.P. Haggerty, C. Chiritescu, N.C. Bhorkar, W.M. Kriven. 2008. “Effect of Transition-Metal-Ion Doping on High Temperature Thermal Expansion of 3 : 2 Mullite-An In Situ, High Temperature, Synchrotron Diffraction Study”. Journal of the European Ceramic Society 28(2): 353–365. DOI: 10.1016/j.jeurceramsoc.2007.03.002.
  • [73] K.N. Lee, R.A. Miller, N.S. Jacobson. 1995. “New Generation of Plasma- -Sprayed Mullite Coatings on Silicon-Carbide”. Journal of the American Ceramic Society 78(3): 705–710. DOI: 10.1111/j.1151-2916.1995.tb08236.x.
  • [74] K.N. Lee, D.S. Fox, N.P. Bansal. 2005. “Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics”. Journal of the European Ceramic Society 25(10): 1705–1715. DOI: 10.1016/j.jeurceramsoc.2004.12.013.
  • [75] K.N. Lee. 2000. “Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics”. The Journal of Engineering for Gas Turbines and Power 122(10): 632–636. DOI: 10.1115/1.1287584.
  • [76] N.S. Jacobson, K.N. Lee, T. Yoshio. 1996. “Corrosion of Mullite by Molten Salts”. Journal of the American Ceramic Society 79(8): 2161–2167. DOI: 10.1111/j.1151-2916.1996.tb08951.x.
  • [77] K.N. Lee. 2004. “Evolution of Environmental Barrier Coatings for Si-Based Ceramics”. 28th International Conference on Advanced Ceramics and Composites A 25(3).
  • [78] E. Garcia, J. Mesquita-Guimarães, P. Miranzo, M.I. Osendi, C.V. Cojocaru, Y. Wang, C. Moreau, R.S. Lima. 2011, “Phase Composition and Microstructural Responses of Graded Mullite/YSZ Coatings under Water Vapor Environments”. Journal of Thermal Spray Technology 20(1–2): 83–91. DOI: 10.1007/s11666-010-9589-6.
  • [79] Shikang Xiao, Jianzhang Li, Panxin Huang, Antong Zhang, Yuhang Tian, Xu Zhang, Jingde Zhang, Jungho Ryu, Guifang Han. 2023. “Evaluation of Environmental Barrier Coatings: A Review”. International Journal of Applied Ceramic Technology: 1–22. DOI: 10.1111/ijac.14370.
  • [80] K.N. Lee, D.S. Fox, J.I. Eldridge, D. Zhu, R.C. Robinson, N.P. Bansal, R.A. Miller. 2003. “Upper Temperature Limit of Environmental Barrier Coatings Based on Mullite and BSAS”. Journal of the American Ceramic Society 86(8): 1299– 1306. DOI: 10.1111/j.1151-2916.2003.tb03466.x.
  • [81] E.K. Arthur, E. Ampaw, S.T. Azeko, Y. Danyuo, B. Agyei-Tuffour, K. Kan-Dapaah, J.D. Obayemi. 2013. “Design of Thermally Reliable Environmental Barrier Coating for a SiC/SiC Ceramic Matrix Composites”, International Journal of Composite Materials 3(6): 191–197. DOI: 10.5923/j.cmaterials.20130306.08.
  • [82] B.T. Richards, H.N.G. Wadley. 2014. “Plasma Spray Deposition of Tri-Layer Environmental Barrier Coatings”. Journal of the European Ceramic Society 34(12): 3069–3083. DOI: 10.1016/j.jeurceramsoc.2014.04.027.
  • [83] D. Tejero-Martin, M. Bai, A.R. Romero, R.G. Wellman, T. Hussain. 2023. “Steam Degradation of Ytterbium Disilicate Environmental Barrier Coatings: Effect of Composition, Microstructure and Temperature”. Journal of Thermal Spray Technology 32: 29–45. DOI: 10.1007/s11666-022-01473-2.
  • [84] Yingjie Jian, Yanfei Wang, Rongjun Liu, Fan Wan, Jin Zhang. 2021. “Property Evolutions of Si/Mixed Yb2Si2O7 and Yb2SiO5 Environmental Barrier Coatings Completely Wrapping Up SiCf /SiC Composites under 1300°C Water Vapor Corrosion”. Ceramics International 47(16): 22373–22381. DOI: 10.1016/j.ceramint.2021.04.246.
  • [85] B.T. Richards, K.A. Young, F. de Franqueville, S. Sehr, M.R. Begley, H.N.G. Wadley. 2016. “Response of Ytterbium Disilicate-Silicon Environmental Barrier Coatings to Thermal Cycling in Water Vapor”. Acta Materialia 106: 1–14. DOI: 10.1016/j.actamat.2015.12.053.
  • [86] B.T. Richards, M.R. Begley, H.N.G. Wadley. 2015. “Mechanisms of Ytterbium Monosilicate/Mullite/Silicon Coating Failure during Thermal Cycling in Water Vapor”. Journal of the American Ceramic Society 98(12): 4066–4075. DOI: 10.1111/jace.13792.
  • [87] B.T. Richards, S. Sehr, F. de Franqueville, M.R. Begley, H.N.G. Wadley. 2016. “Fracture Mechanisms of Ytterbium Monosilicate Environmental Barrier Coatings during Cyclic Thermal Exposure”. Acta Materialia 103: 448–460. DOI: 10.1016/j.actamat.2015.10.019.
  • [88] Guangwu Fang, Xiguang Gao, Yingdong Song. 2023. “A Review on Ceramic Matrix Composites and Environmental Barrier Coatings for Aero-Engine: Material Development and Failure Analysis”. Coatings 13(2): 357. DOI: 10.3390/coatings13020357.
  • [89] K.N. Lee. 2005. “Current Status of Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics”. 107th Annual Meeting and Exposition of the American Ceramic Society. Baltimore, Maryland, April 11–13.
  • [90] L.R. Turcer, A.R. Krause, H.F. Garces, Lin Zhang, N.P. Padture. 2018. “Environmental-Barrier Coating Ceramics for Resistance Against Attack by Molten Calcia-Magnesia-Aluminosilicate (CMAS) Glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7”. Journal of the European Ceramic Society 38(11): 3914–3924. DOI: 10.1016/j.jeurceramsoc.2018.03.010.
  • [91] E. Garcia, H. Lee, S. Sampath. 2019. “Phase and Microstructure Evolution in Plasma Sprayed Yb2Si2O7 Coatings”. Journal of the European Ceramic Society 39(4): 1477–1486. DOI: 10.1016/j.jeurceramsoc.2018.11.018.
  • [92] Jingqi Huang, Ruoyu Liu, Qing Hu, Yuncheng Wang, Xiaojun Guo, Xiangrong Lu, Mingyi Xu, Yunwei Tu, Jieyan Yuan, Longhui Deng, Jianing Jiang, Shujuan Dong, Li Liu, Meizhu Chen, Xueqiang Cao. 2021. “Effect of Deposition Temperature on Phase Composition, Morphology and Mechanical Properties of Plasma-Sprayed Yb2Si2O7 Coating”. Journal of the European Ceramic Society 41(15): 7902–7909. DOI: 10.1016/j.jeurceramsoc.2021.08.046.
  • [93] S.T. Nguyen, T. Nakayama, H. Suematsu, H. Iwasawa, T. Suzuki, K. Niihara. 2019. “Self-Crack Healing Ability and Strength Recovery in Ytterbium Disilicate/Silicon Carbide Nanocomposites”. International Journal of Applied Ceramic Technology 16(1): 39–49. DOI: 10.1111/ijac.13089.
  • [94] B.T. Richards, H. Zhao, H.N.G. Wadley. 2015. “Structure, Composition, and Defect Control during Plasma Spray Deposition of Ytterbium Silicate Coatings”. Journal of Materials Science 50(24): 7939–7957. DOI: 10.1007/s10853-015-9358-5.
  • [95] P. Rokicki, M. Góral, T. Kubaszek, K. Dychtoń, M. Drajewicz, M. Wierzbińska, K. Ochal. 2022. “The Microstructure and Thermal Properties of Yb2SiO5 Coating Deposited Using APS and PS-PVD Methods”. Archives of Materials Science and Engineering 114(2): 49–57. DOI: 10.5604/01.3001.0016.0025.
  • [96] C. Jiang, D. Cietek, R. Kumar, E.H. Jordan. 2020. “Ytterbium Silicate Environmental Barrier Coatings Deposited Using the Solution-Based Precursor Plasma Spray”. Journal of Thermal Spray Technology 29(5): 979–994. DOI: 10.1007/s11666-020-01046-1.
  • [97] E. Bakan, G. Mauer, Y.J. Sohn, D. Koch, R. Vaßen. 2017. “Application of High-Velocity Oxygen-Fuel (HVOF) Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings”. Coatings 7(4): 55. DOI: 10.3390/coatings7040055.
  • [98] Xiao-Feng Zhang, Ke-Song Zhou, Min Liu, Chun-Ming Deng, Shao-Peng Niu, Shi-Ming Xu. 2018. “Preparation of Si/Mullite/Yb2SiO5 Environment Barrier Coating (EBC) by Plasma Spray-Physical Vapor Deposition (PS-PVD)”. Journal of Inorganic Materials 33(3): 325–330. DOI: 10.15541/jim20170194.
  • [99] E. Bakan, G. Mauer, R. Vaßen. 2017. “An Assessment of Thermal Spray Technologies for Deposition of Environmental Barrier Coatings (EBC)”. Proceedings of the International Thermal Spray Conference: 380–381. DOI: /10.31399/asm.cp.itsc2017p0380.
  • [100] E. Bakan, D.E. Mack, S. Lobe, D. Koch, R. Vaßen. 2020. “An Investigation on Burner Rig Testing of Environmental Barrier Coatings for Aerospace Applications”. Journal of the European Ceramic Society 40(15): 6236–6240. DOI: 10.1016/j.jeurceramsoc.2020.06.016.
  • [101] Hongxu Zhao, Xiaofeng Zhang, Chunming Deng, Ziqian Deng, Xiaolong Chen. 2022. “Performance Evaluation and Thermal Shock Behavior of PS- -PVD (Gd0.9Yb0.1)2Zr2O7/YSZ Thermal Barrier Coatings”. Coatings 12(3): 323. DOI: 10.3390/coatings12030323.
  • [102] Jie Xiao, Qian Guo, Liangliang Wei, Wenting He, Hongbo Guo. 2020. “Microstructures and Phases of Ytterbium Silicate Coatings Prepared by Plasma Spray-Physical Vapor Deposition”. Materials 13(7): 1721. DOI: 10.3390/ma13071721.
  • [103] Qian Guo, Wenting He, Jian He, Jiao Wen, Wenbo Chen, Jingyong Sun, Hongbo Guo. 2022. “Characterization of Yb2SiO5-Based Environmental Barrier Coating Prepared by Plasma Spray-Physical Vapor Deposition”. Ceramics International 48(14): 19990–19999. DOI: 10.1016/j.ceramint.2022.03.274.
  • [104] Dongling Yang, Junling Liu, Jungui Zhang, Xinghua Liang, Xiaofeng Zhang. 2022. “In Situ High-Temperature Tensile Fracture Mechanism of PS-PVD EBCs”. Coatings 12(5): 655. DOI: 10.3390/coatings12050655.
  • [105] P. Pędrak, K. Dychtoń, M. Drajewicz, M. Góral. 2021. “Synthesis of Gd2Zr2O7 Coatings Using the Novel Reactive PS-PVD Process”. Coatings 11(10): 1208. DOI: 10.3390/coatings11101208.
  • [106] P. Pędrak, M. Góral, K. Dychtoń, M. Drajewicz, M. Wierzbińska, T. Kubaszek. 2022. “The Influence of Reactive PS-PVD Process Parameters on the Microstructure and Thermal Properties of Yb2Zr2O7 Thermal Barrier Coating”. Materials 15(4): 1594. DOI: 10.3390/ma15041594.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b92bd298-b8f8-49ea-8b62-8a044bdbe527
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.