PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the solution for free vibration of nanobeams based on Eringen nonlocal elasticity theory and Timoshenko beam theory. The small scale effect is considered in the first theory, and the transverse shear deformation effects as well as rotary inertia are taken into account in the latter one. Through variational formulation and the Hamilton principle, the governing differential equations of free vibration of the nonlocal Timoshenko beam and the boundary conditions are derived. The obtained equations are solved by the differential transformation method (DTM) for various frequency modes of the beams with different end conditions. In addition, the effects of slenderness and on vibration behavior are presented. It is revealed that the slenderness affects the vibration characteristics slightly whilst the small scale plays a significant role in the vibration behavior of the nanobeam.
Rocznik
Strony
1041--1052
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
  • Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
Bibliografia
  • 1. Abdel-Halim Hassan I.H., 2002, On solving some eigenvalue problems by using a differential transformation, Applied Mathematics and Computation, 127, 1, 1-22
  • 2. Aifantis E.C., 1984, On the microstructural origin of certain inelastic models, Journal of Engineering Materials and Technology, 106, 4, 326-330
  • 3. Amara K., Tounsi A., Mechab I., Adda-Bedia E.A., 2010, Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field, Applied Mathematical Modeling, 34, 12, 3933-3942
  • 4. Baughman R.H., Zakhidov A.A., de Heer W.A., 2002, Carbon nanotubes – the route toward applications, Science, 297, 5582, 787-792
  • 5. Chen C.O.K., Ju S.P., 2004, Application of differential transformation to transient advectivedispersive transport equation, Applied Mathematics and Computation, 155, 1, 25-38
  • 6. Chow T.L., 2013, Classical Mechanics, CRC Press, Boca Raton, Florida, USA
  • 7. Eringen A.C., 1972a, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10, 5, 425-435
  • 8. Eringen A.C., 1972b, Nonlocal polar elastic continua, International Journal of Engineering Science, 10, 1, 1-16
  • 9. Eringen A.C., 1983, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 9, 4703-4710
  • 10. Eringen A.C., Edelen D.G.B., 1972, On nonlocal elasticity, International Journal of Engineering Science, 10, 3, 233-248
  • 11. Lee Y.Y., Wang C.M., Kitipornchai S., 2003, Vibration of Timoshenko beams with internal hinge, Journal of Engineering Mechanics, 129, 3, 293-301
  • 12. Leissa A.W., Qatu M.S., 2011, Vibration of Continuous Systems, McGraw Hill Professional
  • 13. Li C., Chou T.W., 2003, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, 40, 10, 2487-2499
  • 14. Liew K.M., Hu Y., He X.Q., 2008, Flexural wave propagation in single-walled carbon nanotubes, Journal of Computational and Theoretical Nanoscience, 5, 4, 581-586
  • 15. Lu P., Lee H.P., Lu C., Zhang P.Q., 2006, Dynamic properties of flexural beams using a nonlocal elasticity model, Journal of Applied Physics, 99, 7, 073510
  • 16. Maranganti R., Sharma P., 2007, Length scales at which classical elasticity breaks down for various materials, Physical Review Letters, 98, 19, 195504
  • 17. Mindlin R.D., 1964, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, 51-78
  • 18. Peddieson J., Buchanan G.R., McNitt R.P., 2003, Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science, 41, 3, 305-312
  • 19. Wang C.M., Reddy J.N., Lee K.H., Eds., 2000, Shear Deformable Beams and Plates: Relationships with Classical Solutions, Elsevier
  • 20. Wang C.M., Zhang Y.Y., He X.Q., 2007, Vibration of nonlocal Timoshenko beams, Nanotechnology, 18, 10, 105401
  • 21. Wang Q., 2005, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics, 98, 12, 124301
  • 22. Wang Q., Varadan V.K., 2006, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Materials and Structures, 15, 2, 659
  • 23. Wang X., Cai H., 2006, Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes, Acta Materialia, 54, 8, 2067-2074
  • 24. Wang Z.G., 2013, Axial vibration analysis of stepped bar by differential transformation method, Applied Mechanics and Materials, 419, 273-279
  • 25. Xu M., 2006, Free transverse vibrations of nano-to-micron scale beams, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462, 2074, 2977-2995
  • 26. Zhang Y.Q., Liu G.R., Wang J.S., 2004, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Physical Review B, 70, 20, 205430
  • 27. Zhang Y.Q., Liu G.R., Xie X.Y., 2005, Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity, Physical Review B, 71, 19, 195404
  • 28. Zhou J.K., 1986, Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China
  • 29. Zhu H., Wang J., Karihaloo B., 2009, Effects of surface and initial stresses on the bending stiffness of trilayer plates and nanofilms, Journal of Mechanics of Materials and Structures, 4, 3, 589-604
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9286f15-a5a4-4c8d-90d4-b64d86d6e883
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.