Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, the UBAC has seen severe traffic congestion, resulting in various environmental and traffic problems at the university and its environs. This congestion was due to the significant expansions in buildings andan increase in the number of colleges in addition to the extensive use of private transport modes by students and university employees. This research was an attempt to find a solution for transportation problems in the UBAC, through studying the current transportation system inside the campus, and then suggesting alternatives to enhance the situation in the Campus and its environs as well. The study solutions focused on replacing the current diesel buses with battery-electric buses and restricting some of the private cars toward the Campus. This study supposes this transformation will reduce the CO2 emissions by (54%) in the morning peak hours and by (64%) in the afternoon peak hours, enhance the Passenger Car Unit (PCU) by (31%) in the morning peak hours and by (41%) in the afternoon peak hours, and will improve parking capacity by 114% inside the campus.
Rocznik
Tom
Strony
5--14
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Urban and Regional Planning Centre, University of Baghdad, Baghdad, Iraq
autor
- Urban and Regional Planning Centre, University of Baghdad, Baghdad, Iraq
autor
- Urban and Regional Planning Centre, University of Baghdad, Baghdad, Iraq
autor
- Urban and Regional Planning Centre, University of Baghdad, Baghdad, Iraq
autor
- Urban and Regional Planning Centre, University of Baghdad, Baghdad, Iraq
Bibliografia
- 1. Bukša Juraj, Alen Jugović, Donald Schiozzi, Renato Oblak. 2019. “The compromise model as a method of optimizing the operation of nautical tourism ports”. European Transport \ Trasporti Europei 74(6). ISSN: 1825-3997.
- 2. Duran Javier, Lorena Pradenas, Victor Parada. 2019. “Transit network design with pollution minimization”. Public Transport 11(1): 189-210. ISSN: 1866-749X.
- 3. Wierzbicki S. 2019. „Effect of the proportion of natural gas in the feeding dose on the combustion process in a self-ignition engine with a common rail fuel system”. Diagnostyka 20(4): 75-79. DOI: https://doi.org/10.29354/diag/114834.
- 4. Jacyna M., J. Merkisz. “Proecological approach to modelling traffic organization in national transport system”. Archives of Transport 2(30): 43-56.
- 5. Jacyna M., M. Wasiak, K. Lewczuk, G. Karoń. 2017. “Noise and environmental pollution from transport: decisive problems in developing ecologically efficient transport systems”. Journal of Vibroengineering 19: 5639-5655. DOI: doi.org/10.21595/jve.2017.19371.
- 6. Schmidt Marie, Stefan Voss. 2017. „Advanced systems in public transport”. Public Transport 9(1-2) Special Issue: 3-6. ISSN: 1866-749X.
- 7. Mikulski M., S. Wierzbicki, M. Smieja, J. Matijosius. 2015. „Effect of CNG in a fuel dose on the combustion process of a compression-ignition engine”. Transport 30(2): 162-171. ISSN: 1648-4142.
- 8. Mickevicius T., S. Slavinskas, S. Wierzbicki, K. Duda. 2014. „The effect of diesel-biodiesel blends on the performance and exhaust emissions of a direct injection off-road diesel engine”. Transport 29(4): 440-448. ISSN: 1648-4142.
- 9. MRCagney Pty Limited. Electric Bus Technology Transportation Research Report. 2017.
- 10. Conserve Energy Future. Available at: http://www.conserve-energy-future.com/modes-and-benefits-of-green-transportation.php.
- 11. Columbia Transportation. Available at: http:// transportation.columbia.edu.
- 12. University of Baghdad – Statistics department.
- 13. University of Baghdad – Automobiles and transportation department.
- 14. Lay M.G. 2009. Handbook of road technology. CRC Press. 4th edition
- 15. Cooper Erin, Magdala Arioli, Aileen Carrigan, Umang Jain. 2012. Exhaust Emissions of Transit Buses. EMBARQ.
- 16. Nylund Nils-Olof, Kimmo Erkkilä, Maija Lappi, Markku, Ikonen. 2004. Transit Bus Emission Study: Comparison of Emissions from Diesel and Natural Gas Buses. VTT Processes. Research Report PRO3/P5150/04.
- 17. Yasar Abdullah, et al. 2013. “A comparison of engine emissions from heavy, medium, and light vehicles for CNG, diesel, and gasoline fuels”. Pol. J. Environ. Stud 22(4): 1277-1281.
- 18. Sullivan J.L., R.E. Baker, B.A. Boyer, R.H. Hammerle, T.E. Kenney, L. Muniz, T.J. Wallington. 2004. “CO2 Emission Benefit of Diesel (versus Gasoline) Powered Vehicles”. Environmental Science & Technology 38(12): 3217-3223, DOI: 10.1021/es034928d.
- 19. Safar Zeinab, Labib Monuir. 2009. “Evaluation of CO2 and other Pollutant’s Emissions in the Greater Cairo (GC) area from Diesel Engine & CNG Buses”. Air and Waste Management Conference. AWMA 2009-CO2 Emissions-Paper #138.
- 20. Proterra. Available at: http://www. proterra.com/products/40-foot-catalyst/.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b92446d0-20a5-47cc-9260-10fe0e5e39c7