Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work presents the results acquired during simulation studies done for a 3D free-floating satellite behaviour with input-output decoupling approach. The research object is a free-floating satellite with a 3 DoF rigid 3D manipulator where a noise disturbance was introduced. Different approaches are used to compensate the noise influence. Systems using a visual aid to determine the position of manipulator joints are not ideal and introduce some uncertainties. What is more, determining the position from joints encoders is not error-free while computing angular velocity from numerical differentiation introduces even greater disturbance to the system. A couple of scenarios were investigated where state of the manipulator, including its position and velocity, was disturbed with homogeneous noise. Also the control inputs of the manipulator were disturbed. Simulation results show that the biggest impact on the control quality has a scenario where the satellite’s state has been disturbed with additive noise.
Rocznik
Tom
Strony
1031--1039
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Wrocław, Poland
autor
- Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
- [1] M.M.A. Al-Isawi and J.Z. Sasiadek, “Navigation and control of a space robot capturing moving target”, In 2017 11th Inter-national Workshop on Robot Motion and Control (RoMoCo), 160–165, 2017.
- [2] L. Changchun, Z. Xiaodong, P. Dong, and L. Xin, “Research of visual servo control system for space intelligent robot”, In 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 96–100, 2015.
- [3] W. Cheng, L. Tianxi, and Z. Yang, “Grasping strategy in space robot capturing floating target”, Chinese Journal of Aeronautics 23(5), 591‒598 (2010).
- [4] W. Domski and A. Mazur, “Emergency control of a space 3R manipulator in case of one joint failure”, In 22nd International Conference on Methods and Models in Automation & Robotics, pages 384–389, 2017.
- [5] N. Inaba, T. Nishimaki, M. Asano, and M. Oda, “Rescuing a stranded satellite in space – experimental study of satellite captures using a space manipulator”, In Proceedings 2003 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453) 4, 3071–3076 vol. 3, 2003.
- [6] A. Isidori, Nonlinear Control Systems, Springer-Verlag London, 1995.
- [7] R. Jassemi-Zargani and D. Necsulescu, “Extended kalman filterbased sensor fusion for operational space control of a robot arm”, IEEE Transactions on Instrumentation and Measurement 51(6), 1279–1282, 2002.
- [8] M. Kanazaki, Y. Yamada, and M. Nakamiya, “Trajectory optimization of a satellite for multiple active space debris removal based on a method for the traveling serviceman problem”, In 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES), 61–66, 2017.
- [9] X. Li, Y. Yao, B. Yang, and L. Wang, “Guidance strategy design for space debris removal using fractionated spacecraft”, In 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 264–270, 2016.
- [10] A. Mazur and M. Cholewiński, “Implementation of factitious force method for control of 5R manipulator with skid-steering platform REX”, Bull. Pol. Ac.: Tech. 64(1), 71–80 (2016).
- [11] A. Mazur and B. Lukasik, “The input-output decoupling controller for nonholonomic mobile manipulators”, In Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891), 155–160, 2004.
- [12] C. Meng, Z. Li, H. Sun, D. Yuan, X. Bai, and F. Zhou, “Satellite pose estimation via single perspective circle and line”, IEEE Trans-actions on Aerospace and Electronic Systems 54(6), 3084– 3095, Dec 2018.
- [13] E. Papadopoulos and S. Dubowsky, “On the nature of control algorithms for free-floating space manipulators”, In IEEE Trans. on Robotics and Automation 7, 750–758, 1991.
- [14] R. Petrella, M. Tursini, L. Peretti, and M. Zigliotto, “Speed measurement algorithms for low-resolution incremental encoder equipped drives: a comparative analysis”, In 2007 International Aegean Conference on Electrical Machines and Power Electronics, pages 780–787, Sep. 2007.
- [15] T. Rybus, “Obstacle avoidance in space robotics: Review of major challenges and proposed solutions”, Progress in Aerospace Sciences 101, 31‒48, August 2018.
- [16] T. Rybus and K. Seweryn, “Application of rapidly-exploring random trees (RRT) algorithm for trajectory planning of free floating space manipulator”, In 2015 10th International Workshop on Robot Motion and Control (RoMoCo), 91–96, 2015.[
- [17] T. Rybus, K. Seweryn, and J. Z. Sasiadek, “Control system for free-floating space manipulator based on nonlinear model predictive control (NMPC)”, Journal of Intelligent & Robotic Systems 85(3), 491–509, 2017.
- [18] T. Rybus, K. Seweryn, and J. Z. Sasiadek. “Application of pre-dictive control for manipulator mounted on a satellite”, Archives of Control Sciences 28, 105‒118, 2018.
- [19] K. Seweryn, T. Rybus, P. Colmenarejo, G. Novelli, J. Oleś, M. Pietras, J.Z. Sasiadek, M. Scheper, and K. Tarenko, “Validation of the robot rendezvous and grasping manoeuvre using microgravity simulators”, In 2018 IEEE International Conference on Robotics and Automation (ICRA), 873–880, 2018.
- [20] B. Siciliano and O. Khatib, Springer Handbook of Robotics, Springer-Verlag New York, Inc., 2007.
- [21] M.E. Stieber, M. McKay, G. Vukovich, and E. Petriu, “Vision based sensing and control for space robotics applications”, IEEE Transactions on Instrumentation and Measurement, 48(4), 807– 812, 1999.
- [22] Y. Umetani and K. Yoshida, “Workspace and manipulability analysis of space manipulator”, In Trans. of the Society of Instrument and Control Engineers E-1, 116–123 (2001).
- [23] H. Wang, D. Guo, H. Xu, W. Chen, T. Liu, and K.K. Leang, “Eyein- hand tracking control of a free-floating space manipulator”, IEEE Transactions on Aerospace and Electronic Systems 53(4), 1855–1865, 2017.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b91fa51f-8503-4c26-9c84-50b1a460e0b9