PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mechanical and Sensitivity Properties of Cast PBXs Containing Agglomerated TATB

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the effects of agglomerated TATB on the mechanical and sensitivity properties of cast polymer-bonded explosives (PBXs). By introducing agglomerated TATB, cast PBXs with a high solids content can be obtained. The mechanical properties of TATB-based cast PBXs were evaluated by tensile and compression tests. The experimental results showed that the addition of the agglomerated TATB clearly enhanced the ductility and fracture toughness, but decreased the strength of the PBXs. However, the strength increased with the decreasing particle size of the agglomerated TATB. When TATB-crystal was replaced by agglomerated TATB in the cast PBXs, a significant drop in the initial modulus and stress were observed. Samples with a higher content of agglomerated TATB were less sensitive to impact stimuli. The desired mechanical and sensitivity characteristics may be achieved for TATB-based cast PBXs by introducing agglomerated TATB.
Rocznik
Strony
168--180
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, PR China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, PR China
autor
  • China Academy of Engineering Physics (CAEP), Mianyang 621900, PR China
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, PR China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, PR China
Bibliografia
  • [1] Provatas, A. Energetic Plasticizer Migration Studies. J. Energ. Mater. 2003, 21: 237-245.
  • [2] Gordana, A.; Vesna, D. Characteristics of Cast PBX with Aluminum. Sci. Technical Rev. 2006, 56: 52-58.
  • [3] Pichot, V.; Risse, B.; Mory, J.; Nicollet, C.; Schnell, F.; Comet, M.; Spitzer, D. Mechanical Behavior of Nanostructured and Microstructured Explosives. Propellants Explos. Pyrotech. 2015, 40: 203-209.
  • [4] Yilmaz, G.A.; Şen, D.; Kaya, Z.T.; Tinçer, T. Effect of Inert Plasticizers on Mechanical, Thermal, and Sensitivity Properties of Polyurethane-Based Plastic Bonded Explosives. J. Appl. Polym. Sci. 2014, 131: 40907.
  • [5] Lin, C.M.; Liu, J.H.; Huang, Z.; Gong, F.Y.; Li, Y.B.; Pan, L.P.; Zhang, J.H.; Liu, S.J. Enhancement of Creep Properties of TATB-Based Polymer-Bonded Explosive Using Styrene Copolymer. Propellants Explos. Pyrotech. 2015, 40: 189-96.
  • [6] Wang, Y.; Song, X.L.; Song, D.; Zhang, J.; Song, K.P. Foci for Determining the Insensitivity Features of Nanometer RDX: Nanoscale Particle Size and Moderate Thermal Reactivity. Cent. Eur. J. Energ. Mat. 2015, 12: 799-816.
  • [7] Kelzenberg, S.; Knapp, S.; Weiser, V.; Eisenreich, N. Use of a Hot-Spot Model to Describe the Influence of Particle Size and Distance on Combustion in a Cloud. Cent. Eur. J. Energ. Mat. 2013, 10: 69-85.
  • [8] Kalman, J.; Essel, J. Influence of Particle Size on the Combustion of CL-20/HTPB. Propellants Explos. Pyrotech. 2017, 42: 1261-1267.
  • [9] Siviour, C.R.; Gifford, M.J.; Walley, S.M.; Proud, W.G.; Field, J.E. Particle Size Effects on the Mechanical Properties of a Polymer Bonded Explosive. J. Mater. Sci. 2004, 39: 1255-1258.
  • [10] Ramavat, V.; Sarangapani, R.; Reddy, S.T.; Patil, R.S.; Gore, G.M.; Sikder, A.K. Studies on the Tailoring of Particle Size and Micromeritic Properties of Reduced Shock Sensitivity RDX (RSS-RDX). Cent. Eur. J. Energ. Mat. 2013, 10: 581-592.
  • [11] Gustavsen, R.L.; Gehr, R.J.; Bucholtz, S.M.; Alcon, R.R.; Bartram, B.D. Shock Initiation of the Tri-amino-tri-nitro-benzene based Explosive PBX 9502 Cooled to ‒55 °C. J. Appl. Phys. 2012, 112, paper 074909.
  • [12] Souers, C.; Lewis, P.; Hoffman, M.; Cunningham, B. Thermal Expansion of LX-17, PBX 9502, and Ultrafine TATB. Propellants Explos. Pyrotech. 2011, 36: 335-340.
  • [13] Small IV, W.; Glascoe, E.A.; Overturf, G.E. Measurement of Moisture Outgassing of the Plastic-Bonded TATB Explosive LX-17. Thermochim. Acta 2012, 545: 90-95.
  • [14] Zhu, W.; Xiao, J.J.; Huang, H.; Ma, X.F.; Li, J.S.; Xiao, H.M. Study on Effect of Temperature on Mechanical Properties of TATB and TATB/F2311 Polymer-bonded Explosive by Molecular Dynamics Simulation. J. Nanjing University Sci. Technol. 2007, 31: 244-247.
  • [15] Talawar, M.B.; Agarwal, A.P.; Anniyappan, M.; Gore, G.M.; Asthana, S.N.; Venugopalan, S. Method for Preparation of Fine TATB (2-5 μm) and Its Evaluation in Plastic Bonded Explosive (PBX) Formulations. J. Hazard. Mater. 2006, 137: 1848-1852.
  • [16] Chen, J.; Wang, J.Y.; Wang, B.G. Study on Preparation Process of ε-HNIW Booster Explosive by Water Slurry Method. Chin. J. Explos. Propellants 2009, 32: 28-31.
  • [17] Experimental Methods of Sensitivity and Safety. National Military Standard of China, GJB/772A-97.
  • [18] Suceska, M. Testing Methods of Explosives. Springer, Heidelberg, 1995; ISBN 978-1-4612-0797-9.
  • [19] Ballantyne, E.R.; Hill, R.K.; Spencer, J.W. Probit Analysis of Thermal Sensation Assessments. Int. J. Biometeorol. 1977, 21: 29-43.
  • [20] Selesovsky, J.; Pachman, J. Probit Analysis ‒ a Promising Tool for Evaluation of Explosive’s Sensitivity. Cent. Eur. J. Energ. Mat. 2010, 7: 269-278.
  • [21] General Requirements for the Competence of Testing and Calibration Laboratories. ISO-IEC 17025:1999, Geneva, 1999
  • [22] Ma, X.; Zhang, K.; Shang, H.L.; Li, J.L.; Li, T.; Fu, H.; Zheng, X.X. Measuring Crack Growth and Rise in Temperature around a Cylindrical Defect in Explosive Simulants under Low-Pressure and Long-Pulse Loadings. Propellants Explos. Pyrotech. 2020, 45: 1654-1661.
  • [23] Cai, J.L.; Gao, D.P.; Zheng, S.S.; Chi, Y. Curing Kinetics and Rheology Property of Acrolein-pentaerythritol Resin System. Chinese J. Energ. Mater. 2015, 23: 558-562.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b91de112-e9f4-43c8-ba5e-a368a7ed9217
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.