PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experiment and validation of local bearing capacity for reactive powder concrete confined with high-strength spirals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, ten reactive powder concrete (RPC) specimens confined by high-strength spirals loaded over a limited area are used to investigate their behaviour and determine their local bearing capacity. The crack, wedge, and failure characteristics of RPC are discussed based on tests and simulation. The index of pressure versus deformation is used to evaluate the loading stages. The ratio of the cracking load to the ultimate load varies from 34 to 60%. A wedge pyramid is formed ahead of the bearing plate when approaching the ultimate load; thereafter, it slips downward, splitting the concrete below. The high-strength spirals did not yield even under the ultimate load. According to the test data, all the existing models for predicting the local bearing capacity are nonconservative. In this case, the effect of the actual stress caused by high-strength spirals is considered to further modify the existing calculation models when high-strength spirals are used, and a simple empirical equation for calculating the local bearing capacity of the RPC is developed. The equation and the models modified as described are verified experimentally.
Rocznik
Strony
art. no. e40, 2022
Opis fizyczny
Bibliogr. 36 poz., fot., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Structures Dynamic Behavior and Control Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Structures Dynamic Behavior and Control Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
autor
  • School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Structures Dynamic Behavior and Control Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
Bibliografia
  • 1. Hiremath PN, Yaragal SC. Effect of different curing regimes and durations on early strength development of reactive powder concrete. Constr Build Mater. 2017;154:72–87.
  • 2. Hou X, Cao S, Zheng W, et al. Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates. Eng Struct. 2018;169:119–30.
  • 3. Tibea C, Bompa DV. Ultimate shear response of ultra-high-performance steel fibre-reinforced concrete elements. Arch Civ Mech Eng. 2020;20(2):49.
  • 4. Kim JJ, Yoo DY. Spacing and bundling effects on rate-dependent pullout behavior of various steel fibers embedded in ultra-high-performance concrete. Arch Civ Mech Eng. 2020;20(2). https://doi.org/10.1007/s43452-020-00048-8.
  • 5. Shan B, Lai D, Xiao Y, et al. Experimental research on concrete-filled RPC tubes under axial compression load. Eng Struct. 2018;155:358–70.
  • 6. Bais YP, Couture M. Precast, prestressed pedestrian bridge–world’ first reactive powder concrete structure. PCI J. 1999;44(6):60–71.
  • 7. Zheng W, Zhao J, Zhang B. Experiment and analysis of local compression bearing capacity of reactive powder concrete. J Nanjing Univ Sci Tech. 2008;32(3):381–6 ((in Chinese)).
  • 8. Bauschinger J. Tests with blocks of natural stone. Mech Tech Lab Kgl. 1876;6:13.
  • 9. Komendant AE. Prestressed concrete structures. 1st ed. New York: McGraw-Hill; 1952. p. 172–3.
  • 10. Middendorf KH. Practical aspects of end zone bearing of post-tensioning tendons. PCI J. 1963;8(4):57–62.
  • 11. Niyogi SK. Bearing strength of concrete—geometric variations. J Struct Div ASCE. 1973;99:1471–90.
  • 12. Niyogi SK. Bearing strength of concrete—support, mix. Size Effect J Struct Div ASCE. 1974;100:1685–702.
  • 13. Niyogi SK. Bearing strength of reinforced concrete blocks. J Struct Div ASCE. 1975;101(5):1125–37.
  • 14. Liu Y, Guan J, Wang C. Bearing strength of concrete and its failure mechanism. J China Civil Eng. 1985;18(2):53–65 (in Chinese).
  • 15. Cao S, Yang X. Working mechanism and strength theory of concrete under local pressure. J Harbin Coll Arch Eng. 1982;3:47–56 (in Chinese).
  • 16. GB 500102010. Code for design of concrete structures. Beijing: China Building Industry Press; 2011.
  • 17. Breen JE, Burdet O, Roberts C, et al. Anchorage zone reinforcement for post-tensioned concrete girders. Washington: Transportation Research Board and National Research Council; 1994.
  • 18. Ahmed T, Burley E, Rigden S. Bearing capacity of plain and reinforced concrete loaded over a limited area. ACI Struct J. 1998;95(3):330–42.
  • 19. Bonetti R. Ultimate strength of the local zone in load transfer tests [Thesis]. Blacksburg: Virginia Polytechnic Institute and State University; 2005.
  • 20. Bonetti R, Roberts-Wollmann CL, Santos JT. Bearing strength of confined concrete. ACI Struct J. 2014;111(6):1317–24.
  • 21. Marchão C, Lúcio V, Ganz HR. Efficiency of the confinement reinforcement in anchorage zones of posttensioning tendons. Struct Concrete. 2019;20:1182–98.
  • 22. Marchão C, Lúcio V, Ganz HR. Application of a high performance fiber reinforced self-compacting concrete in post-tensioning anchorage zones. Mumbai: Fib Congress 2014; 2014.
  • 23. Haroon S, Yazdani N, Tawfiq K. Posttensioned anchorage zone enhancement with fiber-reinforced concrete. J Bridge Eng. 2006;11(5):566–72.
  • 24. Shen S, Hou D, Zhao J, et al. Assessment of internal forces for intermediate anchorage zone of post-tensioned concrete structure. Constr Build Mater. 2014;64:370–8.
  • 25. Miao T, Zheng W. Local bearing capacity of concrete under the combined action of pressure force and bond stress. Constr Build Mater. 2019;226:152–61.
  • 26. Ro KM, Kim MS, Lee YH. Validity of anchorage zone design for post-tensioned concrete members with high-strength strands. Appl Sci-Basel. 2020;10:3039.
  • 27. Zhou W, Hu H. Analysis on bearing capacity and behavior of reactive powder concrete with empty concentric duct under local pressure. Eng Mech. 2014;17(7):603–5 (in Chinese).
  • 28. Zhou W, Hu H, Zheng W. Bearing capacity of reactive powder concrete reinforced by high-strength steel spirals. J China Civil Eng. 2014;47(8):63–72 (in Chinese).
  • 29. Zhou W, Zheng W, Hu H. Bearing capacity of reactive powder concrete reinforced by orthogonal ties. J Build Struct. 2013;34(11):141–50 (in Chinese).
  • 30. Zhou W, Hu H, Zheng W. Bearing capacity of reactive powder concrete reinforced by steel fibers. Constr Build Mater. 2013;48:1179–86.
  • 31. Zhou W, Hu H. Bearing capacity of steel fiber reinforced reactive powder concrete confined by spirals. Mater Struct. 2015;48:2613–28.
  • 32. Geng X, Zhou W, Yan J. Reinforcement of orthogonal ties in steel-fiber-reinforced reactive powder concrete anchorage zone. Adv Struct Eng. 2019;22(10):2311–21.
  • 33. GB 50152-2012. Standard for test method of concrete structures. China: Ministry of Housing and Urban-rural Development of the People’s Republic of China; 2012.
  • 34. Cao S, Yang X, Xu K. Experimental study of the reinforced concrete under local pressure. J Harbin Coll Arch Eng. 1983;2:5–26 (in Chinese).
  • 35. Li W. Performance study on the local compression of reactive powder concrete under anchorages [Thesis]. China: Hunan University; 2014.
  • 36. Li S, Zheng W, Zhou W, et al. Analysis of actual confinement provided by high-strength steel spirals in reactive powder concrete of anchorage zones. Struct Concrete. 2021;22(6):3526–43.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b91647b3-f48e-49ee-bc5d-29a42a5f9813
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.