PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some aspects related to the indentation-based viscoelastic modelling of trabecular bone tissue

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to verify to what extent the shape of an indenter tip influences the final form of the constitutive equation for the trabecular bone. Methods: Trabecular bone was formulated as a non-linear viscoelastic material with Mooney–Rivlin hyperelastic model to describe the purely elastic response of the bone tissue. Tests of the mechanical properties of the trabecular bone, resected from the femoral head of a 56-year-old patient, were carried out with two types of indenter: the spherical tip of a diameter of 200 μm and pyramid Vickers tip with 136° between plane faces. Tests with both indenters included loading and unloading phases with no hold at peak force and with hold time t = 20 s and were conducted with a maximum load Pmax = 500 mN and loading/unloading rate V = 500 mN/min. Results: The formulated constitutive model describes the trabecula behaviour very well. The model curves match the experimental results in the loading phase, holding period and most of the unloading ramp. The purely viscoelastic material constants are very close in value for both considered tips, but purely elastic constants differ. Conclusions: The results indicate that the constitutive model based on the indentation with the Vickers tip does not cover the plastic residual deformation. When a viscoelastic response of bone is expected, a model with constants calibrated for the spherical tip should be used, and the other set of parameters values (Vickers tip) when trabeculae may undergo plastic deformation.
Rocznik
Strony
169--177
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Institute of Mechanics and Printing, Warsaw University of Technology, Warszawa, Poland.
  • Institute of Mechanics and Printing, Warsaw University of Technology, Warszawa, Poland.
  • Institute of Mechanics and Printing, Warsaw University of Technology, Warszawa, Poland.
Bibliografia
  • [1] ATTHAPREYANGKUL A., HOFFMAN M., PEARCE G., Effect of geometrical structure variations on the viscoelastic and anisotropic behaviour of cortical bone using multi-scale finite element modelling, J. Mech. Behav. Biomed. Mater., 2021, 113, 104153.
  • [2] BISWAS S., DASGUPTA P., PRAMANIK P., CHANDA A., Macro and micro indentation behavior of the cortical part of human femur, Procedia Materials Science, 2014, 5, 2320–2329.
  • [3] BÖHME B., LAURENT C., MILIS O., PONTHOT J.-P., BALLIGAND M., Determination of Canine Long Bone Ultimate Tensile Strain by Digital Image Correlation, J. Orthop. Res. Ther., 2022, 7, 1221, DOI: 10.29011/2575-8241.001221.
  • [4] CYGANIK Ł., BINKOWSKI M., KOKOT G., RUSIN T., POPIK P., BOLECHAŁA F., NOWAK R., WRÓBEL Z., JOHN A., Prediction of Young’s modulus of trabeculae in microscale using macroscale's relationships between bone density and mechanical properties, J. Mech. Behav. Biomed. Mater., 2014, 36, 120–134.
  • [5] GARCIA D., ZYSSET P.K., CHARLEBOIS M., CURNIER A., A three-dimensional elastic plastic damage constitutive law for bone tissue, Biomech. Model Mechanobiol., 2009, 8, 149–165.
  • [6] GHANBARI J., NAGHDABADI R., Nonlinear hierarchical multiscale modelling of cortical bone considering its nanoscale microstructure, J. Biomech., 2009, 42, 1560–1565.
  • [7] GOH S.M., CHARALAMBIDES M.N., WILLIAMS J.G., Determination of the constitutive constants of non-linear viscoelastic materials, Mech. Time-Depend Mater., 2004, 8, 255–268.
  • [8] HAMMER N., VOIGT C., WERNER M., HOFFMANN F., BENTE K., KUNZE H., SCHOLZ R., STEINKE H., Ethanol and formaldehyde fixation irreversibly alter bones’ organic matrix, J. Mech. Behav. Biomed. Mater., 2014, 29, 252–258.
  • [9] HARRISON N.M., MCDONNELL P.F., KENNEDY O.D., O’BRIEN F.J., MCHUGH P.E., Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties, J. Biomech., 2008, 41 (11), 2589–2596.
  • [10] HONG J., CHA H., PARK Y., LEE S., KHANG G., KIM Y., Elastic moduli and Poisson’s ratios of microscopic human femoral trabeculae, Proceedings of 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, IFMBE16, 2007, 274–277.
  • [11] JANKOWSKI K., PAWLIKOWSKI M., DOMAŃSKI J., Multi-scale constitutive model of human trabecular bone, Continuum Mech. Thermodyn., 2022, DOI: doi.org/10.1007/s00161-022-01161-0.
  • [12] JAZIRI A., RAHMOUN J., NACEUR H., DRAZETIC P., MARKIEWICZ E., Multi-scale modelling of the trabecular bone elastoplastic behaviour under compression loading, Eur. Comput. Mech., 2012, 21, 254–269.
  • [13] JOHNSON T.P.M., SOCRATE S., BOYCE M.C., A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates, Acta Biomater., 2010, 6, 4073–4080.
  • [14] JONAS J., BURNS J., ABEL E.W., CRESSWELL M.J., STRAIN J.J., PATERSON C.R., A technique for the tensile testing of demineralised bone, J. Biomech., 1993, 26, 271–276.
  • [15] KLINGER S., GREINWALD M., AUGAT P., HOLLENSTEINER M., Mechanical and morphometric characterization of custom-made trabecular bone surrogates, J. Mech. Behav. Biomed. Mater., 2022, 129, 105146.
  • [16] LINDEN J.C., BIRKENHAGER-FRENKEL D.H., VERHAAR J.A.N., WEINANS H., Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution, J. Biomech., 2001, 34, 1573–1580.
  • [17] MAKUCH A.M., SKALSKI K.R., Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests, Acta Bioeng. Biomech., 2018, 20 (3), 153–164.
  • [18] MOONEY M., A theory of large elastic deformation, J. Appl. Phys., 1940, 11, 582–592.
  • [19] NATALI A.N., CARNIEL E.L., PAVAN P.G., Constitutive modeling of inelastic behaviour of cortical bone, Med. Eng. Phys., 2008, 30, 905–912.
  • [20] OLESIAK S.E., OYEN M.L., FERGUSON V.L., Viscous-elasticplastic behavior of bone using Berkovich nanoindentation, Mech. Time-Depend. Mater., 2010, 14, 111–124.
  • [21] OLIVER W.C., PHARR G.M., An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7 (6), 1564–1583.
  • [22] OYEN M.L., Sensitivity of polymer nanoindentation creep measurements to experimental variables, Acta Mater., 2007, 55, 3633–3639.
  • [23] OYEN M.L., COOK R.F., Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials, J. Mater. Res., 2003, 18, 139–150.
  • [24] PAWLIKOWSKI M., Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite, Mech. Time-Depend. Mater., 2013, 18, 1–20.
  • [25] PAWLIKOWSKI M., BARCZ K., Non-linear viscoelastic constitutive model for bovine cortical bone tissue, Biocybern. Biomed. Eng., 2016, 36, 491–498.
  • [26] PAWLIKOWSKI M., JANKOWSKI K., SKALSKI K., New microscale constitutive model of human trabecular bone based on depth sensing indentation technique, J. Mech. Behav. Biomed. Mater., 2018, 85, 162–169.
  • [27] PAWLIKOWSKI M., SKALSKI K., SOWIŃSKI T., Hyper-elastic modelling of intervertebral disc polyurethane implant, Acta Bioeng. Biomech., 2013, 15, 43–50.
  • [28] PORTER D., Pragmatic multiscalemodelling of bone as a natural hybrid nanocomposite, Mater. Sci. Eng., 2004, A 365, 38–45.
  • [29] RAHMOUN J., NACEUR H., MORVAN H., DRAZETIC P., FONTAINE C., MAZERAN P.E., Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact, Mater. Sci. Eng., 2020, C 117, 111276.
  • [30] RHO J.Y., TSUI T.Y., PHARR G.M., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, 1997, 18, 1325–1330.
  • [31] SAKAI M., SHIMIZU S., Indentation rheometry for glass-forming materials, J. Non-Crystalline Solids, 2001, 282, 236–247.
  • [32] SHIMIZU S., YANAGIMOTO T., SAKAI M., Pyramidal indentation load–depth curve of viscoelastic materials, J. Mater. Res., 1999, 14, 4075–4086.
  • [33] SMITH L.J., SCHIRER J.P., FAZZALARI N.L., The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets, J. Biomech., 2010, 43, 3144–3149.
  • [34] STOCCHERO M., JINNO Y., TOIA M., JIMBO R., LEE C., YAMAGUCHI S., IMAZATO S., BECKTOR J.P., In silico multi-scale analysis of remodeling peri-implant cortical bone: a comparison of two types of bone structures following an undersized and non-undersized technique, J. Mech. Behav. Biomed. Mater., 2020, 103, 103598.
  • [35] TURNER C.H., WANG T., BURR D.B., Shear Strength and Fatigue Properties of Human Cortical Bone Determined from Pure Shear Tests, Calcif Tissue Int., 2001, 69 (6), 373–378.
  • [36] UNGER S., BLAUTH M., SCHMOELZ W., Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone, Bone, 2010, 47, 1048–1053.
  • [37] WOFRAM U., WILKE H.-J., ZYSSET P.K., Rehydration of vertebral trabecular bone: Influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level, Bone, 2010, 46, 348–354.
  • [38] WU D., ISAKSSON P., FERGUSON S.J., PERSSON C., Young’s modulus of trabecular bone at the tissue level: A review, Acta Biomater., 2018, 78, 1–12.
  • [39] ZLÁMAL P., JIROUŠEK O., KYTYR D., DOKTOR T., Indirect determination of material model parameters for single trabecula based on nanoindentation and three-point bending test, Eng. Mech., 2012, 1611–1620.
  • [40] ZYSSET P.K., Indentation of bone tissue: a short review, Osteoporos. Int., 2009, 20, 1049–1055.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b915d89d-acd9-4a9f-ba73-e92ab126522a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.