PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributed fault estimation of multi-agent systems using a proportional-integral observer: A leader-following application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a methodology for observer-based fault estimation of leader-following linear multi-agent systems subject to actuator faults. First, a proportional-integral distributed fault estimation observer is developed to estimate both actuator faults and states of each follower agent by considering directed and undirected graph topologies. Second, based on the proposed quadratic Lyapunov equation, sufficient conditions for the asymptotic convergence of the observer are obtained as a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the proposed approach.
Rocznik
Strony
551--560
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • TURIX—Dynamics Diagnostics and Control Group, National Technological Institute of Mexico, IT Tuxtla Gutiérrez, Carr. Panam. km 1080, SN, 29050, Tuxtla Gutierrez, Mexico
  • TURIX—Dynamics Diagnostics and Control Group, National Technological Institute of Mexico, IT Tuxtla Gutiérrez, Carr. Panam. km 1080, SN, 29050, Tuxtla Gutierrez, Mexico
  • IBISC Laboratory, University of Evry—Paris-Saclay University, 40 rue du Pelvoux, 91020, Evry, France
  • IT Hermosillo, National Technological Institute of Mexico, Av. Tecnológico y Per. Poniente, S/N, 83170, Hermosillo, Mexico
  • TURIX—Dynamics Diagnostics and Control Group, National Technological Institute of Mexico, IT Tuxtla Gutiérrez, Carr. Panam. km 1080, SN, 29050, Tuxtla Gutierrez, Mexico
Bibliografia
  • [1] Bermúdez, J.-R., López-Estrada, F.-R., Besançon, G., Valencia-Palomo, G., Torres, L. and Hernández, H.-R. (2018). Modeling and simulation of a hydraulic network for leak diagnosis, Mathematical and Computational Applications 23(4): 70.
  • [2] Cai, H. and Huang, J. (2014). The leader-following attitude control of multiple rigid spacecraft systems, Automatica 50(4): 1109–1115.
  • [3] Chadli, M., Aouaouda, S., Karimi, H.R. and Shi, P. (2013). Robust fault tolerant tracking controller design for a VTOL aircraft, Journal of the Franklin Institute 350(9): 2627–2645.
  • [4] Chen, G. and Song, Y.-D. (2015). Robust fault-tolerant cooperative control of multi-agent systems: A constructive design method, Journal of the Franklin Institute 352(10): 4045–4066.
  • [5] Das, B., Subudhi, B. and Pati, B.B. (2016). Cooperative formation control of autonomous underwater vehicles: An overview, International Journal of Automation and computing 13(3): 199–225.
  • [6] Estrada, F.L., Ponsart, J.C., Theilliol, D. and Astorga-Zaragoza, C.-M. (2015). Robust H−/H∞ fault detection observer design for descriptor-LPV systems with unmeasurable gain scheduling functions, International Journal of Control 88(11): 2380–2391.
  • [7] Hu, C., Jing, H., Wang, R., Yan, F. and Chadli, M. (2016). Robust H∞ output-feedback control for path following of autonomous ground vehicles, Mechanical Systems and Signal Processing 70: 414–427.
  • [8] Kuriki, Y. and Namerikawa, T. (2014). Consensus-based cooperative formation control with collision avoidance for a multi-UAV system, 2014 American Control Conference, Portland, OR, USA, pp. 2077–2082.
  • [9] Lewis, F.L., Zhang, H., Hengster-Movric, K. and Das, A. (2013). Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer, London.
  • [10] Li, J. (2015). Distributed cooperative tracking of multi-agent systems with actuator faults, Transactions of the Institute of Measurement and Control 37(9): 1041–1048.
  • [11] Li, S., He, J., Li, Y. and Rafique, M.U. (2016). Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective, IEEE Transactions on Neural Networks and Learning Systems 28(2): 415–426.
  • [12] López-Estrada, F.-R., Rotondo, D. and Valencia-Palomo, G. (2019). A review of convex approaches for control, observation and safety of linear parameter varying and Takagi–Sugeno systems, Processes 7(11): 814.
  • [13] Ma, J., Zheng, Y. and Wang, L. (2015). LQR-based optimal topology of leader-following consensus, International Journal of Robust and Nonlinear Control 25(17): 3404–3421.
  • [14] Nasirian, V., Moayedi, S., Davoudi, A. and Lewis, F.L. (2014). Distributed cooperative control of DC microgrids, IEEE Transactions on Power Electronics 30(4): 2288–2303.
  • [15] Prodan, I., Olaru, S., Stoica, C. and Niculescu, S.-I. (2013). Predictive control for trajectory tracking and decentralized navigation of multi-agent formations, International Journal of Applied Mathematics and Computer Science 23(1): 91–102, DOI: 10.2478/amcs-2013-0008.
  • [16] Rotondo, D., López-Estrada, F.-R., Nejjari, F., Ponsart, J.-C., Theilliol, D. and Puig, V. (2016). Actuator multiplicative fault estimation in discrete-time LPV systems using switched observers, Journal of the Franklin Institute 353(13): 3176–3191.
  • [17] Shi, J., He, X., Wang, Z. and Zhou, D. (2014). Distributed fault detection for a class of second-order multi-agent systems: An optimal robust observer approach, IET Control Theory & Applications 8(12): 1032–1044.
  • [18] Wang, J.-L. and Wu, H.-N. (2012). Leader-following formation control of multi-agent systems under fixed and switching topologies, International Journal of Control 85(6): 695–705.
  • [19] Wu, Y., Wang, Z., Ding, S. and Zhang, H. (2018). Leader–follower consensus of multi-agent systems in directed networks with actuator faults, Neurocomputing 275: 1177–1185.
  • [20] Yang, H. and Yin, S. (2018). Descriptor observers design for Markov jump systems with simultaneous sensor and actuator faults, IEEE Transactions on Automatic Control 64(8): 3370–3377.
  • [21] Yang, H. and Yin, S. (2019a). Actuator and sensor fault estimation for time-delay Markov jump systems with application to wheeled mobile manipulators, IEEE Transactions on Industrial Informatics 16(5): 3222–3232.
  • [22] Yang, H. and Yin, S. (2019b). Reduced-order sliding-mode-observer-based fault estimation for Markov jump systems, IEEE Transactions on Automatic Control 64(11): 4733–4740.
  • [23] Yang, P., Ma, B., Dong, Y. and Liu, J. (2018). Fault-tolerant consensus of leader-following multi-agent systems based on distributed fault estimation observer, International Journal of Control, Automation and Systems 16(5): 2354–2362.
  • [24] Ye, D., Chen, M. and Li, K. (2017). Observer-based distributed adaptive fault-tolerant containment control of multi-agent systems with general linear dynamics, ISA Transactions 71(1): 32–39.
  • [25] Zhai, G. (2015). A generalization of the graph Laplacian with application to a distributed consensus algorithm, International Journal of Applied Mathematics and Computer Science 25(2): 353–360, DOI: 10.1515/amcs-2015-0027.
  • [26] Zhang, H., Feng, T., Yang, G.-H. and Liang, H. (2014). Distributed cooperative optimal control for multiagent systems on directed graphs: An inverse optimal approach, IEEE Transactions on Cybernetics 45(7): 1315–1326.
  • [27] Zhang, K., Jiang, B. and Cocquempot, V. (2015). Adaptive technique-based distributed fault estimation observer design for multi-agent systems with directed graphs, IET Control Theory & Applications 9(18): 2619–2625.
  • [28] Zhao, M., Peng, C., He, W. and Song, Y. (2017). Event-triggered communication for leader-following consensus of second-order multiagent systems, IEEE Transactions on Cybernetics 48(6): 1888–1897.
  • [29] Zhou, B., Wang, W. and Ye, H. (2014). Cooperative control for consensus of multi-agent systems with actuator faults, Computers & Electrical Engineering 40(7): 2154–2166.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b907467e-c3be-4794-a09b-503554bde13d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.