PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hazards of hydrogen transport in the existing natural gas pipeline network

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of European economies will occur in parallel with efforts aiming to reduce the use of fossil fuels in power generation and transport. This has led to an increased interest in hydrogen as the energy carrier of the future. However, before hydrogen can be used efficiently on a large scale, a new hydrogen-based economy will have to be developed to serve gas production, storage and transport needs. An alternative to what would be rather costly investment in new infrastructure could be to use the existing network of gas pipelines by adding hydrogen to natural gas and transporting the mixture. The new solution should be considered in terms of research on the technological adaptation of the existing pipelines (appropriate fixtures and fittings, materials, pipeline geometry) as well as on possible consequences of a potential failure and the related serious hazards. The paper presents the results of an analysis of the effects of a jet fire arising due to an uncontrolled release of natural gas and its mixture with hydrogen from a pipeline. The impact of the variability in the gas and the pipeline parameters on the severity of the consequences is shown.
Rocznik
Strony
329--335
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Institute of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. M. Ogden, Prospects for building a hydrogen energy infrastructure, Annual Review of Energy and the Environment 24 (1) (1999) 227–279.
  • [2] X. Shen, G. Xiu, S. Wu, Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition, Applied Thermal Engineering 120 (2017) 741–747.
  • [3] M. W. Melaina, O. Antonia, M. Penev, Blending hydrogen into natural gas pipeline networks. a review of key issues, Tech. rep., National Renewable Energy Laboratory (2013).
  • [4] A. Marangon, M. N. Carcassi, Hydrogen–methane mixtures: Dispersion and stratification studies, International Journal of Hydrogen Energy 39 (11) (2014) 6160–6168.
  • [5] O. Florisson, et al., Naturally preparing for the hydrogen economy by using the existing natural gas system as catalyst, Final publishable activity report, NV Nederlandse Gasunie Google Scholar.
  • [6] D. Haeseldonckx, W. D’haeseleer, The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure, International Journal of Hydrogen Energy 32 (10-11) (2007) 1381–1386.
  • [7] A. Rusin, K. Stolecka, Modelling the effects of failure of pipelines transporting hydrogen, Chemical and Process Engineering 32 (2) (2011) 117–134.
  • [8] A. Witkowski, A. Rusin, M. Majkut, K. Stolecka, Comprehensive analysis of hydrogen compression and pipeline transportation with thermodynamics and safety aspects, Energy (141) (2017) 2508–2518.
  • [9] M. Chaczykowski, A. J. Osiadacz, Technologie power-to-gas w aspekcie współpracy z systemami gazowniczymi, VI Konferencja Naukowo-Techniczna Energetyka Gazowa, Zawiercie.
  • [10] S. Castagnet, J.-C. Grandidier, M. Comyn, G. Benoît, Effect of longterm hydrogen exposure on the mechanical properties of polymers used for pipes and tested in pressurized hydrogen, International Journal of Pressure Vessels and Piping 89 (2012) 203–209.
  • [11] S. Hasan, L. Sweet, J. Hults, G. Valbuena, B. Singh, Corrosion riskbased subsea pipeline design, International Journal of Pressure Vessels and Piping 159 (2018) 1–14.
  • [12] A. Rusin, K. Stolecka, Reducing the risk level for pipelines transporting carbon dioxide and hydrogen by means of optimal safety valves spacing, Journal of Loss Prevention in the Process Industries 33 (2015) 77–87.
  • [13] A. Rusin, K. Stolecka, Hazards associated with hydrogen infrastructure, Journal of Power Technologies 97 (2) (2017) 153–157.
  • [14] K. Shan, J. Shuai, K. Xu, W. Zheng, Failure probability assessment of gas transmission pipelines based on historical failure-related data and modification factors, Journal of Natural Gas Science and Engineering 52 (2018) 356–366.
  • [15] G. Chamberlain, Developments in design methods for predicting thermal radiation from flares, Chemical Engineering Research and Design 65 (4) (1987) 299–309.
  • [16] J. Arnaldos, J. Casal, H. Montiel, M. Sanchez-Carricondo, J. Vılchez, Design of a computer tool for the evaluation of the consequences of accidental natural gas releases in distribution pipes, Journal of loss prevention in the process industries 11 (2) (1998) 135–148.
  • [17] Ed. Bosch C.J.H., Yellow Book, R.A.P.M. Weterings, Haque (2005).
  • [18] J. LaChance, A. Tchouvelev, A. Engebo, Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure, international journal of hydrogen energy 36 (3) (2011) 2381–2388.
  • [19] Polska Norma: PN-EN 13480-1:2012, 2012.
  • [20] PHAST v 6.7 Software.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b90297df-d8e1-484e-bf02-c39ca8e57234
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.