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ABSTRACT
A technique is proposed for testing the stability and convergence of Finite Differences schemes for the
simulation of the propagation of pulses in non linear media. As a first application, the propagation of a
semi-infinite sine pulse in a medium with a periodic non linearity is analyzed.

INTRODUCTION

Nonlinear problems have been widely analyzed in
recent years, leading to the observation of sev-
eral interesting effects, such as the generation of
solitons, chaotic or singular solutions, subharmon-
ics and/or higher harmonics [1], etc. Due to
the formidable difficulties encountered in a gen-
eral treatment of non linear equations, a theoretical
analysis leading to closed form solution is usually
not available. Even a numerical solution, based on
sequential processing, is generally cumbersome and
time consuming,.

Moreover, several difficulties may arise in a nu-
merical treatment, due to a lack of stability and
convergence of the discrete version of the partial
differential equation describing the physical model.
Also, in non linear cases, the classical stability
analysis, due to Von Neumann, is not always suffi-
cient to guarantee the convergence of the numerical
solution [2].

We propose here a simulation of the propaga-
tion of pulses in non linear media based on parallel
processing, following a Local Interaction Simula-
tion Approach (LISA), already succesfully applied
in the linear case for 2-D and 3-D arbitrarily com-
plex media [3,4,5]. The analysis of the convergence
is confirmed empirically by means of a comparison
between the results of two schemes with different
orders of accuracy.

THEORY

Let us consider the propagation of an ultrasenic
wave in a 1-D linear medium with a non linear z-
dependent forcing. We assume that a longitudinal
pulse enters the specimen normal to its external
surface. The wave equation can be written as

pii(z,t) = Sw'(z,1) (1 + b(z)w(z,t)), (1)
where p is the density of the specimen, S its stiff-
ness and b(z)w(z,t) is an arbitrary perturbation.

In a general treatment, b(z) should be a smooth
function of z. However, the Sharp Interface Model
(SIM) [3,4] allows us to treat also cases with sharp
discontinuities of the perturbation. In this case,
the iteration equation must be derived in corre-
spondence of the discontinuities directly from phys-
ical principles and conservation laws. Due to space
limitations, we restrict ourselves here to the as-
sumption that b(z) be a smooth function.

By discretizing space and time with steps ¢ and 7
respectively, Eq.(1) yields the following basic Finite
Difference (FD) schemes:

‘wf+1 =2wf—w:—l+a(w.!+1
—2w] +wi_) (1 +bw) + O(r*, "), (2)
wf-H =2uw! —w™ - la_2 (wf'+2 = 16wf-+1 + 30w!

—16wi_, 4+ wi_5)(1 + bw) + O(7*,€%), (3)
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where o = S72/pe?. Equations (2) and (3), if con-
vergent, are expected to be completly equivalent,
albeit with a different order of accuracy .

The error E(7,¢) in the discretization can be
easily evaluated. If we consider separately each
Fourier component of the solution

w(:ﬂ, t) s Zuk (.’.I.T,f) o Z Ckeik(z”‘”t}’

we have
€2r? .
E(7,e) = W(w“/(l + bw) — Cw) =
C((1+bw)-C)
- 12n4 (4)
2.2
E(r,e) = m%(ca; + %e?w‘”u + bw))
Clsds(l+bw)—C
— (157; (12?14 ) ) (5)

where C' = S7%/(pe®) and n = 1/(ke) is the num-
ber of grid points describing the pulse. It can be
easily seen that scheme (2) may be more accurate,
due to the compensation between the errors due
to the spatial and temporal derivatives. On the
other side, in scheme (3) there is no compensation,
but much smaller spatial errors, allowing a better
convergence when errors due to the non linearity
prevail.

As already metioned, a proper choice of lattice
and time steps is fundamental to guarantee sta-
bility. The Von Neumann analysis leads to the fol-
lowing stability conditions for the above mentioned
schemes (2 and 3, respectively):

€

WD (6)

and

Ti5s ——-—-———-————fm
= 4./S/p(1 + bu)’

where u is a local value of the wave amplitude w

(7)

(i.e. its maximum to guarantee everywhere stabil-
ity).

The same analysis allows an estimate of the con-
vergence properties of the numerical solution. Con-
sidering the dispersion relations for both continu-
ous and discrete equations, it is possible to write
the ratio @(k) between the discrete and the con-
tinuous velocities (vp and vc) of the wave as a
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function of the wave number k. Of course, max-
imal convergence is obtained when such ratio ap-
proaches to 1. For the schemes (2) and (3).
obtain respectively:

arccos (1 + « (coske - 1) (1 + bu))

we

Qk) =
kT4/5/p(1 + bu)
arccos (1 + a (cos?kﬁ — 16coske + 15) (1 - bu))
Q(k) =

kry/S[p(1 + bu)

Therefore, the choice

€
V' S/p(1 + bu)

for scheme (2) leads to @ equal one, confirming the
convergence of the method. However, it is not pos-
sible to find an optimal value of 7 for scheme (3).
In this case, the shift between the velocities can
only be minimized and some effects due to numer-
ical dispersion are expected.

(8)

NUMERICAL RESULTS

Several numerical calculations have been per-
formed. In the following, unless otherwise speci-
fied, the results are referred to scheme (2), with
S/p = 1. This assumption is not a restriction, but
only a simplification, easily achieved by means of a
proper choice of units. The source pulse has been
chosen to be a semiinfinite sine pulse of the form

(9)

injected into the specimen from the left border (z =
0). Wherever possible, the period of the pulse has
been kept constant (w = 2m/100) and the number
of time steps ¢ in each figure has been chosen in
such a way as to guarantee the same physical time
t = i1 for all the plots.

Figure 1 shows that scheme (3) is slightly less
convergent than scheme (2), as expected from pre-
vious considerations. It is, however, nore stable
when the non linearity increases.

In Fig.2, the dependence of the convergence on
the discretization of the initial pulse (gaussian) is
investigated. The numerical results are indepen-
dent from the number n of points describing the
initial pulse, provided that n is sufficiently large
(n = 120,60, 30). Poorer convergence is obtained
for small values of n (n = 6, 3), in agreement with
the predictions for the errors in Equations (4) and
(5). Of course a large value of n is equivalent to a

w(0,t) =sinwt , 12>0,
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Figure 1: Wave amplitude w} vs. i as obtained from the simulation using scheme (3) (upper plot) and

scheme (4) (lower plot). The negligible difference between the results show the good convergence of the
method, even though a few numerical errors appear in the bottom plot.
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Figure 2: Wave amplitude w! vs. ¢ for different values of n. Schemes with n = 120, 60, 30 are perfectly
convergent. Convegence is poorer and numerical errors are larger decreasing n (i.e. increasing ¢).
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Figure 3: Wave amplitude w! vs. ¢ for different values of 7. Perfect convergence and stability is
obtained when 7 is inside the stability region (upper plot) or on its border (middle plot). A local
instability develops at the early stages of the simulation when 7 1s immediately outside the stability
region (lower plot).
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Figure 4: Wave amplitude w} vs. ¢ for different kind of non linearities. The first plot represents the
linear case b = 0. The second plot a periodic non linearity & = 0.1 coswi and the third plot a constant
non linearity b = .01.
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small value of ¢. Similar results have been found
for other pulse sources.

In Fig. 3, w} is plotted vs. i for different
values of the time step 7, b = 0.1cos(fz), with
§ = 27/200,and € = 1. Perfect convergence is ob-
tained when 7 is inside (upper plot) or even at the
border of the stability region (middle plot). As
expected, a local numerical instability develops al-
ready at the early stages of the simulation when 7
is even slightly outside the stability region.

The effect of the non linear term is analyzed in
Fig.4, where w! is reported vs. i for several kinds
of non linearities. In the upper plot, the linear
case is reported for reference. In the middle plot,
a periodic non linearity of the kind & = 0.1 cosfz
has been used. The amplitude of the wave both
increases and decreases as the wave propagates
through the material. The effect is completely
analogous to that of acoustic beatings. It is also
similar to an effect found in a model recently devel-
oped for studying the wave propagation in a com-
posite with wavy reinforcing fibers [6]. The effect
can be easily explained, considering that the non-
linear term is equivalent to a change in the stiff-
ness of the material (amplified by the factor w).
Therefore different amounts of material deforma-
tion are needed along the specimen for storing the
same amount of energy.

In the bottom plot of Fig.4, a constant non lin-
earity with & = 0.01 has been chosen. Although the
behaviour appears to be completely different from
the one in the previous case, the previous physical
interpretation is still valid. The change in stifi-
ness of the specimen is no longer periodic, but it
increases constantly in time. Therefore, a perma-
nent deformation of the material is needed for stor-
ing the additional energy. Such a deformation, of
course, increases constantly in time in the region
already reached by the wave and vanishes where
the forcing of the injection keeps the deformation
fixed.

CONCLUSIONS

In general the discretization of non linear prob-
lems may introduce severe errors due to lack of
convergence. Since the usual stability analysis
is not always satisfactory to test the convergence
when the continuous solution of the equation is not
known, we have proposed a method based on a
comparison between FD schemes with different or-
ders of accuracy. The results, applied to a partic-
ular non linear propagation equation, are in good
agreement with the ones which can be obtained
from a von Neumann stability analysis.
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The method has been applied succesfully also to
the analysis of other non linear equations, such as
the Boussinesq equation for soliton propagation [7].
An application to other propagation equations of
physical and practical relevance is currently under
progress.
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