PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and development of a semi-active suspension system for a quarter car model using PI controller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the design and development of a semi-active suspension system for a vehicle. The main idea is to develop a system that is able to damp vibration of the vehicle body while crossing the bumps on the road. This system is modeled for a single wheel assembly and then the laboratory prototype of the complete system has been manufactured. It is used to physically simulate the spring-mass-damper system in vehicle and observe the frequency response to the external disturbances. The developed low-cost smart experimental equipment consists of a motor with offset mass which works as an oscillator to induce vibration, a spring-mass-damper system where the variable damper works as a pneumatic cylinder that allows varying the damping constant (c). Proportional-Integral (PI) controller is used to control the damping properties of the semi-active suspension system automatically. The system is designed in contrast to the most of the available suspension systems in the market that have only passive damping properties. The results of this research demonstrate the efficiency of the developed variable damper-based control system for the vehicle suspension system.
Słowa kluczowe
Twórcy
autor
  • University Sarawak, Malaysia
  • School of Engineering, Nazarbayev University, Kazakhstan
autor
  • School of Engineering, Nazarbayev University, Kazakhstan
Bibliografia
  • [1] Vladimir Popovic, Branko Vasic, Milos Petrovic, Sasa Mitic, “System Approach to Vehicle Suspension System Controling CAE Environment”, Strojniški vestnik – Journal of Mechanical Engineering, vol. 57, 2011, no. 2, 100–109. DOI: 10.5545/sv-jme.2009.018.
  • [2] Abd El-Nasser S. Ahmed, Ahmed S. Ali, Nouby M. Ghazaly, G. T. Abd el-Jaber, “PID controller of active suspension system for a quarter car model”, International Journal of Advances in Engineering & Technology, Dec. 2015, vol. 8, no. 6, 899–909.
  • [3] J. Marzbanrad, N. Zahabi, “H∞ Active Control of a Vehicle Suspension System Exited by Harmonic and Random Roads”, Mechanics and Mechanical Engineering, vol. 21, 2017, no. 1, 171–180.
  • [4] Zheng Yinhuan, “Research on fuzzy logic control of vehicle suspension system”. In: 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, 2010, 307–310.
  • [5] J. Marzbarad, G. Ahmadi, Y. Hojjat, H. Zohoor, “Optimal active control of vehicle suspension system including time delay and preview for rough roads”, Journal of Vibration and Control, vol. 8, 2002, no. 7, 967–991. DOI: 10.1177/107754602029586.
  • [6] R.F. Harrison, S.S. Banks, A new non-linear design method for active vehicle suspension systems. Research report. ACSE research report 700, Department of Control and Systems Engineering, University of Sheffield, UK, 1998.
  • [7] Rafał Burdzik, Łukasz Konieczny, Błażej Adamczyk, “Automatic Control Systems and Control of Vibrations in Vehicles CaR”. In: International Conference on Transport Systems Telematics TST 2014: Telematics – Support for Transport,chapter 13, 120–129. DOI: 10.1007/978-3-662-45317-9_13.
  • [8] Guido P. A. Koch, Adaptive Control of Mechatronic Vehicle Suspension Systems, PhD thesis report, 2011, University of Technology in Muenchen, Germany.
  • [9] Abdolvahab Agharkakli, Ghobad Shafiei Sabet, Armin Barouz, “Simulation and Analysis of Passive and Active Suspension System Using Quarter Car Model for Different Road Profile”, International Journal of Engineering Trends and Technology, vol. 3, 2012, no. 5, 636–644.
  • [10] J. Fei, M. Xin, “Robust adaptive sliding mode controller for semi-active vehicle suspension system”, International Journal of Innovative Computing,Information and Control, vol. 8, no. 1(B), January 2012, pp. 691–700.
  • [11] Francisco Beltran-Carbajal, Esteban Chavez-Conde, Gerardo Silva Navarro, Benjamin Vazquez Gonzalez, Antonio Favela Contreras, “Control of Nonlinear Active Vehicle Suspension Systems Using Disturbance Observers”, Vibration Analysis and Control – New Trends and Development, 131–150. DOI: 10.5772/25131.
  • [12] Esteban Chavez-Conde, Francisco Beltran-Carbajal Antonio Valderrábano González, Antonio Favela Contreras, “Active vibration control of vehicle suspension systems using sliding modes,differential flatness and generalized proportional-integral control”, Rev. Fac. Ing. Univ. Antioquia, Universidad de Antioquia, Medellín, Colombia no. 61, 2011, 104–113.
  • [13] G. Koch, T. Kloiber, “Driving State Adaptive Control of an Active Vehicle Suspension System”. In: IEEE Transactions on Control Systems Technology, vol. 22, no. 1, Jan. 2014, 44–57.
  • [14] X. Wei, J. Li, X. Liu, “LQR control scheme for active vehicle suspension systems based on modal decomposition”. I: 25th Chinese Control and Decision Conference (CCDC), Guiyang, 2013, 3296–3301. DOI: 10.1109/CCDC.2013.6561516.
  • [15] D. Zhaoxiang, L. Fei, “Electromagnetic Active Vehicle Suspension System”. In: Third International Conference on Measuring Technology and Mechatronics Automation, Shangshai, 2011, 15–18. DOI: 10.1109/ICMTMA.2011.291.
  • [16] L. Yan, L. Shaojun, “Preview Control of an Active Vehicle Suspension System Based on a Four-Degree-of-Freedom Half-Car Model”. In: 2nd International Conference on Intelligent Computation Technology and Automation, Changsha, Hunan, 2009, 826–830.
  • [17] T. J. Gordon, C. Marsh, Q. H. Wu, “A learning automaton methodology for control system design in active vehicle suspensions”. In: International Conference on Control, Coventry, vol. 1, UK, 1994, 326–331. DOI: 10.1049/cp:19940153.
  • [18] M. Sever,H. Yazici, “Active control of vehicle suspension system having driver model via L2 gain state derivative feedback controller”. In: 4th International Conference on Electrical and Electronic Engineering (ICEEE), Ankara, Turkey, 2017, 215–222.
  • [19] S. Wen, M. Z. Q. Chen, Z. Zeng, X. Yu,T. Huang, “Fuzzy Control for Uncertain Vehicle Active Suspension Systems via Dynamic Sliding-Mode Approach”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 1, Jan. 2017, 24–32. DOI: 10.1109/TSMC.2016.2564930.
  • [20] A. Tiwari, M. Lathkar, P. D. Shendge, S. B. Phadke, “Skyhook control for active suspension system of heavy duty vehicles using inertial delay control”. In: IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, 2016, 1–6. DOI: 10.1109/ICPEICES.2016.7853289.
  • [21] Y. Shen, Q. Lu and Y. Ye, “Double-Stator Air-Core Tubular Permanent Magnet Linear Motor for Vehicle Active Suspension Systems”, 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, 2016, 1–6. DOI: 10.1109/VPPC.2016.7791667.
  • [22] Y. Xia, Y. Xu, F. Pu, M. Fu, “Active disturbance rejection control for active suspension system of tracked vehicles”. In: 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, 2016, 1760–1764. DOI: 10.1109/ICIT.2016.7475030.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b9021e91-5da4-4854-abac-d6385c1f063c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.