PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Research in Operation Management in Engine Room by using Language Sentiment/Opinion Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper argues for the necessity of a combination MMR methods (questionnaire, interview) and sentiment/opinion techniques to personal satisfaction analysis at the maritime and training education and proposes a generic, but practical research approach for this purpose. The proposed approach concerns the personal satisfaction evaluation of Engine Room simulator systems and combines the speech recording (sentiment/opinion analysis) for measuring emotional user responses with usability testing (SUS tool). The experimental procedure presented here is a primary effort to research the emotion analysis (satisfaction) of the users-students in Engine Room Simulators. Finally, the ultimate goal of this research is to find and test the critical factors that influence the educational practice and user’s satisfaction of Engine Room Simulator Systems and the ability to conduct full-time system control by the marine crew.
Twórcy
  • Dept. Shipping, Trade and Transport, University of Aegean, Greece
autor
  • Dept. Shipping, Trade and Transport, University of Aegean, Greece
Bibliografia
  • 1 Brannen, J. 1995. Combining qualitative and quantitative ap‐proaches: An overview, J. Brannen (ed.), Mixing Methods: Qualitative and Quantitative Research. UK:Avebury, 3‐38.
  • 2 Bryman, J. 1995. Quantitative and qualitative research:further reflections on their integration, Mixing Methods: Qualita‐tive and Quantitative Research. UK:Avebury, 57‐80.
  • 3 Brooke, J. 1996. SUS: A “quick and dirty” usability scale. In: Jordan, P. W., Thomas, B., Weerdmeester, B. A., McClelland (eds.) Usability Evaluation in Industry, Taylor & Francis, London, UK pp. 189‐194.
  • 4 Choi, Y. and Cardie, C. 2008. Learning with compositional semantics as structural inference for sub sentential sentiment analysis, Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2008), pp. 793–801, Honolul, Hawaii.
  • 5 Crook, C. 1994. Computers and the collaborative experience of learning. London, Routledge.
  • 6 Cowley, J., 1995. The Concept of the ISM Code. Proceeding of Management and Operation of Ships: Practical Techniques for Today and Tomorrow, The Institute of Marine Engineers, 24‐25 May 1995, London, Paper 1.
  • 7 Czaja, R. and Blair, J. 1996. Designing surveys: Aguide to decisions and procedures, Thousand Oaks, CA, Pine Forge Press.
  • 8 Dix, A. Finlay, J. Abowd, G. D. Beale, R. 2004. Human‐ Computer Interaction, UK:Pearson Education Limited.
  • 9 Eirinaki, M. Pisa, S. Singh, J. 2012. Feature‐based opinion mining and ranking, Journal of Computer and System Sciences 78 , pp.1175–1184
  • 10 Fidel, R. 2008. Are we there yet?: Mixed methods research in library and information science, Library & Information Science Research, pp. 265‐72.
  • 11 Fontaine, J. R. Scherer, K. R. Roesch, E. B. Ellsworth, P. C. 2007. The world of emotions is not two‐dimensional , Psychological Science, 18(2), pp. 1050‐1057.
  • 12 Fotopoulou, A. Mini, M. Pantazara, M. Moustaki, A. 2009. “La combinatoire lexicale des noms de sentiments en grec moderne”, in Le lexique des emotions, I. Navacova and A. Tutin, Eds. Grenoble: ELLUG.
  • 13 Hagerty M, Just M A. 1993. Constructing mental models of machines from text and diagrams, Journal of Memory and Language 32, pp.71‐42
  • 14 Hatzivassiloglou, V. and McKeown, K.B. 1997. Predicting the semantic orientation of adjectives, Proceedings of ACL‐97, Madrid, Spain.
  • 15 IMO‐International, Maritime Organization, 2003. Issues for training seafarers resulting from the implementation on board technology, STW 34/INF.6.
  • 16 ISO 9241, ʺErgonomics of Human System Interactionʺ, http://www.iso.org.
  • 17 John, B.E., and Marks, S.J. 1997. Tracking the effectiveness of usability evaluation methods, Behaviour and Information Technology, 16, 4, pp 188‐202.
  • 18 Jia, L. Yu, C.T. Meng, W. 2009. The effect of negation on sentiment analysis and retrieval effectiveness, Proceedings of CIKM 2009, China.
  • 19 Kantner, L., Sova, H.L., Rosenbaum, S. 2003. Alternative Methods for Usability Research, SIGDOC’03, San Francisco, California, USA.
  • 20 Kim, S.‐M. and Hovy, E. 2004. Determining the sentiment of opinions, in: Proceedings of the 20th International Conference on Computational Linguistics, COLING’04.
  • 21 Kluj, S. 2002. Relationship between learning goals and proper simulator, ICERRS5 Paper.
  • 22 Kotzabasis, P. 2011. Human‐Computer Interaction: Principles, methods and examples, Athens, Kleidarithmos (in Greek).
  • 23 Lambov, D. Pais, S. Dias, G. 2011. Merged Agreement Algorithms for Domain Independent Sentiment Analysis, Pacific Association, For Computational Linguistics (PACLING 2011), Procedia ‐ Socila and Behavioural Sciences, 27, pp. 248‐257.
  • 24 Lazarous, R. S. 1982. Thoughts on the Relation between Emotion and Cognition, American Psychologist, 24, pp. 210‐222.
  • 25 Malatesta, L. 2009. “ Human – Computer Interaction based in analysis and synthesis optical data”, Phd Thesis, Athens (in Greek), NTUA.
  • 26 Meena, A. and Prabhakar, T.V. 2007. Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis, in: Proceedings of the 29th European Conference on IR Research, ECIR’07.
  • 27 Moilanen, K. and Pulman, S. 2007. Sentiment composition, Proceedings of the Conference on Recent Advances in Natural Language Processing (RANLP), Bulgaria
  • 28 Maks, I. and Vossen, P. 2012. A lexicon model for deep sentiment analysis and opinion mining applications, Decision Support Systems 53, pp. 680‐88.
  • 29 Nielsen, J. 1994. Usability Engineering, Academic Press Inc.
  • 30 Nielsen, J, and Mack, R.L. (eds.) 1994. Usability Inspection Methods, New York, John Wiley.
  • 31 Norman, K.l. 2006. Levels of Automation and User Participation in Usability Testing, Interacting with computers, Elsevier.
  • 32 Pinker, S. Jackendorff, R. 2005. The faculty of language: what’s special about it?, Cognition, 95, pp. 201‐236.
  • 33 Österman, C. Rose, L. Osvalder, A.L. 2010. Exploring maritime ergonomics from a bottom line perspective, WMU Journal of Maritime Affairs, Volume 9, Number 2, pp 153‐168.
  • 34 Papachristos, D. Alafodimos, K. Nikitakos, N. 2012a. Emotion Evaluation of Simulation Systems in Educational Practice, Proceedings of the International Conference on E‐Learning in the Workplace (ICELW12), 13‐ 15 June, NY: Kaleidoscope Learning, www.icelw.org.
  • 35 Papachristos, D. Koutsabasis, P. Nikitakos, N. 2012b. Usability Evaluation at the Ship’s Bridge: A Multi‐Method Approach, In Proceedings of 4th International Symposium on “Ships Operation, Management and Economics”‐SOME12, The Greek Section (SNAME), 8‐9 November 2012, Eygenideio Foundation, Athens.
  • 36 Papachristos, D. Alafodimos, K. Kikilia, K. Nikitakos, N. 2013.Sentiment Analysis Use in The Satisfaction Evaluation for Maritime Education, Proceedings of the International Conference on E‐Learning in the Workplace (ICELW13), 12‐14 June, NY: Kaleidoscope Learning, www.icelw.org.
  • 37 Patton, M. Q. 1990. Qualitative Evaluation and Research Methods. CA:Sage Publications.
  • 38 Petersen, E.S. Dittman, K. Lützhöft, M. 2010. Making the Phantom Real: A Case of Applied Maritime Human Factors, Proceedings of SNAME SOME 2010,http://publications.lib.chalmers.se/cpl/record/I ndex.xsql?pubid=133364 (last access 18 November\ 2014).
  • 39 Retalis, S. (eds.), 2005. Educational Technology. The advanced internet technologies in learning service, Athens: Kastaniotis Editions (in greek).
  • 40 Ryu, Y.S. 2005.Development of Usabilities Questionnaires for Electronic mobile Products and Decision Making Methods, Phd Thesis, Blacksburg, Virginia, USA, retrieving from mhttp://scholar.lib.vt.edu/theses/available/etd‐ 08212005‐ 234205/unrestricted/ETD_Ryu_Final.pdf (last access 19 November 2014).
  • 41 Sekimizu, K., 1997. Current work at IMO on formal safety assessment. Proceedings of Marine Risk Assessment: A Better Way to Manage Your Business. The Institute of Marine Engineers, London, 8‐9 April 1997.
  • 42 Solomonidou, X. 2001. Modern Educational Technology. Saloniki, Kodikas (in Greek).
  • 43 Tian, P. Liu, Y. Liu, M. Zhu, S. 2009. Research of product ranking technology based on opinion mining, Intelligent Computation Technology and Automation,vol. 4, International Conference, pp. 239– 243..
  • 44 Tsianos, N., Lekkas, Z., Germanakos, P., Mourlas, C., Samaras, G 2009. An Experimental Assessment of the Use of Cognitive and Affective Factors in Adaptive Educational Hypermedia, IEEE Transactions on Learning Technologies, Vol. 2, No. 3, July‐September 2009, pp. 249‐ 258.
  • 45 Tsoukalas, V. Papachristos, D. Mattheu, E. Tsoumas, N. 2008. Marine Engineers’ Training: Educational Assessment of Engine Room Simulators, WMU Journal of Maritime Affairs, Vol.7, No.2, pp.429‐448, ISSN 1651‐ 436X, Current Awareness Bulletin, Vol. XX‐No.10, Dec. 2008, IMO Maritime Knowledge Centre, pp.7.
  • 46 Tsoumas, N. Papachristos, D. Matheou, E. Tsoukalas, V. 2004. Pedagogical Evaluation of the Ship’s Engine Room Simulator, used in apprentice marine engineers’ Instruction, 1st International Conference IT, Athens.
  • 47 Tullis, T. and Albert, B. 2008. Measuring the User Experience: Collecting Analysing and Presenting Usability Metrics, Morgan Kaufmann.
  • 48 Torner, M. Almstrom, C. Karlsson, R. Kadefors, R. 1994. Working on a moving surface—a biomechanical analysis of musculoskeletal load due to ship motions in ncombination with work, Ergonomics, Vol. 37.
  • 49 Vosniadou, St. 2001. Introduction in Psychology, Vol. I, Athens, Gutenberg (in Greek), 2001.
  • 50 Wang, J. 2001. The current status and future aspects in formal ship safety assessment, Safety Sciences 38, pp. 19‐ 30.
  • 51 Zajonc, R. B. 1984. On the Primacy of Affect, American Psychologist, 39, pp. 117‐123.
  • 52 Zhang, W. Yu, C. Meng, W. 2007. Opinion retrieval from blogs, in: Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management, CIKM’07, pp. 831–840.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8fd6528-3865-4efb-b92d-9d787690f1d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.