PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the optode array representation using optical properties at systole and diastole

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The necessity to develop an optode array in order to probe the fetus oxygenation noninvasively regardless of the fetus position has been highlighted in previous literature. In this paper, a series of optical simulations are carried out to determine the best representation of optode array by using optical properties at systolic and diastolic states. The selection is based on the highest flux values accumulated at respective detectors. To accomplish the objective, a homogenous three-layer semi-infinite tissue model is implemented to represent the pregnant woman model. The geometry of the model as well as Monte Carlo simulation are carried out using commercial software, whereas the optical properties related to systolic and diastolic states are defined for all wavelengths. A statistical noise analysis is also introduced in order to find a sufficient number of rays to be launched into the optical tissue system.
Czasopismo
Rocznik
Strony
747--759
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Department of Electronics Engineering, UTHM, Batu Pahat, Malaysia
  • Department of Electrical, Electronics and System, UKM, Bangi, Malaysia
autor
  • Department of Electrical, Electronics and System, UKM, Bangi, Malaysia
  • nstitute of Space Science, UKM, Bangi, Malaysia
autor
  • Department of Electrical, Electronics and System, UKM, Bangi, Malaysia
Bibliografia
  • [1] LILJESTRÖM L., WIKSTRÖM A.-K., HANSON U., AKERUD H., JONSSON M., Evaluation of the discrepancy between pH and lactate in combined fetal scalp blood sampling, Acta Obstetricia et Gynecologica Scandinavica 90(10), 2011, pp. 1088–1093.
  • [2] CARBONNE B., NGUYEN A., Fetal scalp blood sampling for pH and lactate managment during labor, Journal de Gynécologie Obstétrique et Biologie de la Reproduction 37(1, Supplement), 2008, pp. S65–S71.
  • [3] MAHENDRU A.A., LEES C.C., Is intrapartum fetal blood sampling a gold standard diagnostic tool for fetal distress?, European Journal of Obstetrics and Gynecology and Reproductive Biology 156(2), 2011, pp. 137-139.
  • [4] WIBERG-ITZEL E., LIPPONER C., NORMAN M., HERBST A., PREBENSEN D., HANSSON A., BRYNGELSSON A.-L., CHRISTOFFERSSON M., SENNSTRÖM M., WENNERHOLM U.-B., NORDSTRÖM L., Determination of pH or lactate in fetal scalp blood in management of intrapartum fetal distress: randomised controlled multicentre trial, BMJ 336, 2008, p. 1284.
  • [5] TUFFNELL D., HAW W.L., WILKINSON K., How long does a fetal scalp blood sample take?, BJOG: An International Journal of Obstetrics and Gynaecology 113(3), 2006, pp. 332–334.
  • [6] WESTGREN M., KRUGER K., EK S., GRUNEVALD C., KUBLICKAS M., NAKA K., WOLFF K., PERSSON B., Lactate compared with pH analysis at fetal scalp blood sampling: a prospective randomised study, BJOG: An International Journal of Obstetrics and Gynaecology 105(1), 1998, pp. 29–33.
  • [7] MASIN D.I., PAULSEN A.W., BROUILLARD R.G., IYER V.K., Fetal transmission pulse oximetry, [In] Engineering in Medicine and Biology Society, Proceedings of the 19th Annual International Conference of the IEEE, Vol. 5, 1997, pp. 2326–2329.
  • [8] RAMANUJAM N., HONG LONG, RODE M., FOROUZAN I., MORGAN M., CHANCE B., Antepartum, transabdominal near infrared spectroscopy: Feasibility of measuring photon migration through the fetal head in utero, Journal of Maternal-Fetal Medicine 8(6), 1999, pp. 275–288.
  • [9] GRIGNAFFINI A., SONCINI E., RONZONI E., PIAZZA E., ANFUSO S., VADORA E., Meconium-stained amniotic fluid and fetal oxygen saturation measured by pulse oximetry during labour, Acta Bio Medica 75(Suppl. 1), 2004, pp. 45–52.
  • [10] LINHARTOVA L., KURTANSKY A., SUSKA P., Correlation between fetal blood oxygen saturation and umbilical blood pH values, Bratislava Medical Journal – Bratislavske Lekarske Listy 110(11), 2009, pp. 684–687.
  • [11] REUSS J.L., Factors influencing fetal pulse oximetry performance, Journal of Clinical Monitoring and Computing 18(1), 2004, pp. 13–24.
  • [12] MAESEL A., MÅRTENSSON L., GUDMUNDSSON S., MARŠÅL K., Fetal pulse oximetry: a methadological study, Acta Obstetricia et Gynecologica Scandinavica 75(2), 1996, pp. 144–148.
  • [13] ESZTO M.-L., MOREL O., DEVAL B., THIÉBAUGEORGES O., Fetal pulse oxymetry, Gynécologie Obstétrique and Fertilité 35(6), 2007, pp. 576–581.
  • [14] RAMANUJAM N., HIELSCHER A.H., RODE M., CHANCE B., FOROUZAN I., VISHNOI G., Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies, Journal of Biomedical Optics 5(2), 2000, pp. 173–184.
  • [15] VISHNOI G., HIELSCHER A.H., RAMANUJAM N., CHANCE B., Photon migration through fetal head in utero using continuous wave, near-infrared spectroscopy: development and evaluation of experimental and numerical models, Journal of Biomedical Optics 5(2), 2000, pp. 163–172.
  • [16] ZOURABIAN A., CHANCE B., RODE M., BOAS D.A., RAMANUJAM N., SIEGEL A., Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry, Journal of Biomedical Optics 5(4), 2000, pp. 391–405.
  • [17] JACQUES S.L., RAMANUJAM N., VISHNOI G., CHOE R., CHANCE B., Modeling photon transport in transabdominal fetal oximetry, Journal of Biomedical Optics 5(3), 2000, pp. 277–282.
  • [18] MAWN T., PENGCHENG LI, NIOKA S., CHANCE B., Transabdominal monitoring of fetal arterial oxygen saturation using pulse oximetry, [In] Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference 2002, 2002, pp. 227–228.
  • [19] MAWN T., NIOKA S., NIJLAND M., BLOY L., CHANCE B., LEIGH J.S., ELLIOTT M.A., Effect of errors in baseline optical properties on accuracy of transabdominal near-infrared spectroscopy in fetal sheep brain during hypoxic stress, Journal of Biomedical Optics 10(6), 2005, article 064001.
  • [20] VINTZILEOS A.M., NIOKA S., LAKE M., PENGCHENG LI, QINGMING LUO, CHANCE B., Transabdominal fetal pulse oximetry with near-infrared spectroscopy, American Journal of Obstetrics and Gynecology 192(1), 2005, pp. 129–133.
  • [21] KOK BENG GAN, ZAHEDI E., ALI M.A.M., Transabdominal fetal heart rate detection using NIR photopleythysmography: instrumentation and clinical results, IEEE Transactions on Biomedical Engineering 56(8), 2009, pp. 2075–2082.
  • [22] CANPOLAT M., MOURANT J.R., High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue, Physics in Medicine and Biology 45(5), 2000, pp. 1127–1140.
  • [23] MUNRO E.A., Implantable Biosensors for Neural Imaging: A Study of Optical Modeling and Light Sources, Graduate Department of the Institute of Biomaterials and Biomedical Engineering, University of Toronto, 2009.
  • [24] GAN K.B., Noninvasive fetal heart rate detection using nearinfrared and adaptive filtering, PhD Thesis, Department of Electrical, Electronics and System Engineering, Universiti Kebangsaan Malaysia, Selangor, 2009.
  • [25] MANNHEIMER P.D., CASCINI J.R., FEIN M.E., NIERLICH S.L., Wavelength selection for low-saturation pulse oximetry, IEEE Transactions on Biomedical Engineering 44(3), 1997, pp. 148–158.
  • [26] CHAIKEN J., GOODISMAN J., On probing human fingertips in vivo using near-infrared light: model calculations, Journal of Biomedical Optics 15(3), 2010, article 037007.
  • [27] HUEBER D.M., FRANCESCHINI M.A., MA H.Y., ZHANG Q., BALLESTEROS J.R., FANTINI S., WALLACE D., NTZIACHRISTOS V., CHANCE B., Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument, Physics in Medicine and Biology 46(1), 2001, pp. 41–62.
  • [28] BEARDEN E.D., WILSON J.D., ZHAROV V.P., LOWERY C.L., Deep penetration of light into biotissue, Proceedings of SPIE 4257, 2001, pp. 417–425.
  • [29] RICHARDS D.S. et al., Umbilical Vessels: Visualization, 1992, http://www.thefetus.net
  • [30] JACQUES S.L., Laser tissue interaction, Cancer Bulletin, 1989, pp. 211–218.
  • [31] DUBUS I.G., JANSSEN P.H.M., Issues of replicability in Monte Carlo modeling: a case study with a pesticide leaching model, Environmental Toxicology and Chemistry 22(12), 2003, pp. 3081–3087.
  • [32] WUKITSCH M.W., PETTERSON M.T., TOBLER D.R., POLOGE J.A., Pulse oximetry: analysis of theory, technology, and practice, Journal of Clinical Monitoring and Computing 4(4), 1988, pp. 290–301.
  • [33] SCHMITT J.M., Simple photon diffusion analysis of the effects of multiple scattering on pulse oximetry, IEEE Transactions on Biomedical Engineering 38(12), 1991, pp. 1194–1203.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8f5326f-d9a9-4124-b804-5e3a4789ce1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.