PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Resistance of Bacillus Amyloliquefaciens Spores to Melt Extrusion Process Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odporność zarodników na warunki technologiczne procesu wytłaczania stopu polimeru
Języki publikacji
EN
Abstrakty
EN
With the increasing demand for functionalised textile materials, industry is focusing on research that will add novel properties to textiles. Bioactive compounds and their benefits have been and are still considered as a possible source of unique functionalities to be explored. However, incorporating bioactive compounds into textiles and their resistance to textile process parameters has not yet been studied. In this study, we developed a system to study the resistance of Bacillus amyloliquefaciens spores against melt extrusion process parameters, like temperature (21, 200, 250, 300 °C), pressure (0.1, 0.6 and 1.0 MPa) and residence time (0, 1 and 10 minutes). The spores were successfully embedded in PET (polyethylene terephthalate) films and fibres through melt extrusion. Afterwards the survival rate of the spores was determined after extrusion and the data was used to develop a quadratic equation that relates the survival rate to the spore concentration.
PL
Wraz ze wzrostem zainteresowania funkcjonalizacją tekstyliów, przemysł skupia swoją uwagę na badaniach, dzięki którym można nadać nowe właściwości tekstyliom. Bioaktywności produktów jest jednym z czynników, które mają bardzo duże znaczenie. Jednakże możliwości wprowadzania substancji bioaktywnych do stosowanych materiałów włókienniczych nie są dostatecznie poznane. W pracy przedstawiono badania pozwalające na określenie odporności zarodników Bacillus amyloliquefaciens na warunki procesu wytłaczania stopów polimerów. Badania prowadzono przy temperaturach 21, 200, 250, 300 °C, ciśnieniach 0.1, 0.6 and 1.0 MPa oraz czasie oddziaływania 1 i 10 minut. Zarodniki wprowadzono do stopu PET i wytłaczano w postaci folii i włókien. Określono zależności przeżycia zarodników w zależności od ich stężenia w stopie polimerów.
Rocznik
Strony
102--107
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab.
Twórcy
autor
  • Belgium, Gent, Ghent University, Faculty of Engineering and Architecture, Department of Textiles
autor
  • Belgium, Gent, Ghent University, Faculty of Science, Department of Biology
autor
  • Belgium, Ronse, DevanChemicals
autor
  • Belgium, Gent, Ghent University, Faculty of Engineering and Architecture, Department of Textiles
autor
  • Sweden, Borås, University of Borås, The Swedish School of Textiles
  • Belgium, Gent, Ghent University, Faculty of Engineering and Architecture, Department of Textiles
autor
  • Belgium, Gent, Ghent University, Faculty of Science, Department of Biology
Bibliografia
  • 1. Gomes I, Sarkar P, Rahman S, Rahim M, Gomes D. Production of cellulose from Talaromycesemersonii and evaluation of its application in eco-friendly functional finishing of jute-based fabrics. Bangladesh Journal of Microbiology 2007; 24: 109-114.
  • 2. Kumar V, Meenakshisundaram S, Selvakuma N. Conservation of cellulose enzyme in bio-polishing application of cotton fabrics. Journal of the Textile Institute 2008; 99, 339-34.
  • 3. Hong K, Park J, Sul I, Youk J, Kang T. Preparation of antimicrobial Poly (vinyl alcohol) nanofibers containing silver nanoparticles. Journal of polymer science Part B: Polymer Physics 2006; 44: 2468-2474.
  • 4. Voort M, García D, Moezelaar R, Abee T. Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group. International Journal of Food Microbiology 2010; 139: 108-15.
  • 5. Broda J, Gawlowski A, Fabia J, Slusarczyk C. Super-molecular structure of polypropylene fibers modified by additives. Fibers and textiles in Eastern Europe 2007; 15: 30-33.
  • 6. Gashti M, Moradian S. Effect of Nanoclay Type on dyeability of polyethylene Terephthalate/clay nanocomposites. Journal of Applied Polymer Science 2012; 5, 125: 4109-4120.
  • 7. Alderton G, Snell N. Chemical states of bacterial spores: dry heat resistance. Applied Microbiology 2012; 17: 745-749.
  • 8. Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. The Society for Applied Microbiology, Journal of Applied Microbiology 2006; 101: 514-525.
  • 9. Setlow P. Bacterial spore resistance. In: Bacterial stress responses. American society for microbiology. Storz G &Hengge-Aronis R. (ed.), Washington, D.C. 1999: 217-230.
  • 10. Setlow P, Gisela S, Regine H. Resistance of bacterial spores. ASM press (American society for microbiology) 1752 N street NW Washington, 2000, DC 20036-2804.
  • 11. Beladjal L, Mertens J, Clegg JS. Biochemical and biophysical aspects of the tolerance of anhydrobiotic crustacean embryos to very high temperatures. Journal of Thermal Biology 2008; 33: 117-127.
  • 12. Anthierens T, Ragaert P, Verbrugghe S, Ouchchen A, De Geest B, Noseda B, Mertens J, Beladjal L, Cuyper D, Dierickx W, Prez F, Devlieghere F. Use of endospore-forming bacteria as an active oxygen scavenger in plastic packaging materials. Innovative Food Science and Emerging Technologies 2011; 12, 594-59.
  • 13. Juhee A, Balasubramaniam V. Physiological Responses of Bacillus amyloliquefaciens Spores to High Pressure. Journal of Microbiology and Biotechnology 2007; 17: 524-529.
  • 14. Margosch D, Gänzle M, Ehrmann M, Vogel R. Pressure inactivation of Bacillus endospores. Applied and Environmental Microbiology 2004; 70: 7321-7328.
  • 15. Mertens J, Beladjal L, Devlieghere F, Verbrugghe S, Sas B, Du Prez F, Anthierens T, Ouchchen A. Incorporation of thermo-resistant and/or pressure-resistant organisms in materials. Resilux 2010, WO2010/034776A1.
  • 16. Nagórska K, Bikowski M, Obuchowski M. Multicellular behavior and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Review. Acta Biochemica Polanica 2007; 54: 495-508.
  • 17. Mertens J, Beladjal L, Alcantara A, Fougnies L, Van Der Straeten D, Clegg JS. Survival of dried eukaryotes (anhydrobiotes) after exposure to very high temperatures. Biological Journal of the Linnean Society 2008; 93: 15-22.
  • 18. Yang W, Ponce A. Rapid endospore viability assay of Clostridium sporogenes spores. International Journal of Food Microbiology 2009; 133: 213-216.
  • 19. Marquis R, Sim J, Shin S. Molecular mechanism of resistance to heat and oxidative damage. Journal of Applied Bacteriology 1994; 76: 40S-48S.
  • 20. Furukawa S, Narisawa N, Watanabe T, Kawarai T, Myozen K, Okazaki S, Ogihara H, Yamasaki M. Formation of the spore clumps during heat treatment increases the heat resistances of bacterial spores. International Journal of Food Science and Technology 2005; 102: 107-111.
  • 21. Furukawa S, Noma S, Shimoda M, Hayakawa I. Effect of initial concentration of bacterial suspensions on their inactivation by high hydrostatic pressure. International Journal of Food Science and Technology 2002; 37: 573-577.
  • 22. Beaman T, Pankratz H, Gerhardt P. Heat Shock Affects Permeability and Resistance of Bacillus stearothermophilus Spores. Applied and Environmental Microbiology 1988; 54: 2515-2520.
  • 23. Setlow B, Setlow P. Heat Inactivation of Bacillus subtilis Spores Lacking Small, Acid-Soluble Spore Proteins Is Accompanied by Generation of a basic Sites in Spore DNA. Journal of Bacteriology 1994; 176, 7: 2111-2113.
  • 24. Lee S, Sim S. Increased heat resistance of GeoBacillusstearothermophilus spores heat-shocked during sporulation. Journal of Microbiology and Biotechnology 2006; 16: 633-636.
  • 25. Setlow P. Mechanisms for the prevention of damage to the DNA in spores of Bacillus species. Annual Review of Microbiology 1995; 49: 29-54.
  • 26. Gould G. History of science – Spores Lewis B Perry Memorial Lecture 2005. Journal of Applied Microbiology 2006; 101: 507-513.
  • 27. Minh H, Dantigny P, Perrier-Cornet J, Gervais P. Germination and inactivation of Bacillus Subtilis spores induced by moderate hydrostatic pressure. Biotechnology And Bioengineering 2010; 107: 876-883.
  • 28. Reineke K, Mathys A, Knorr D. The Impact of High Pressure and Temperature on Bacterial Spores: Inactivation Mechanisms of Bacillus subtilis above 500 MPa. Journal of Food Science 2011; 76: M189-M197.
  • 29. Nicholson W, Munakata N, Horneck G, Melosh H, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews 2000; 64: 548-572.
  • 30. Li-Chan S, Nakai D, Wood F. Hydrophobicity and solubility of meat proteins and their relationship to emulsifying proteins. Journal of food science 1984; 49: 345-350. In: Matin M, Casas C, Cambero M, San B. Study of the effect of heat (treatments) on meat protein denaturation as determined by ELISA. Food Chemistry 1992; 43: 147-150.
  • 31. Wiencek K, Klapes N, Forgrding P. Hydrophobicity of Bacillus and Clostridium spores. Applied Environmental Microbiology 1990; 56: 2600-2605.
  • 32. Pflug I, Holcomb R, Gomez M. Principles of the thermal destruction of microorganisms, 2001. In: Furukawa S, Narisawa N, Watanabe T, Kawarai T, Myozen K, Okazaki S, Ogihara H, Yamasaki M. Formation of the spore clumps during heat treatment increases the heat resistances of bacterial spores. International Journal of Food Science and Technology 2005; 102: 107-111.
  • 33. Myozen K, Okazaki S, Ogihara H, Yamasaki M. Formation of spore clumps during heat treatment increases the heat resistance of bacterial spores. International Journal of Food Microbiology 2005; 102: 107-111.
  • 34. Senior A, Moir A. The Bacillus cereus- GerN and GerT protein homologs have distinct roles in spore germination and outgrowth, respectively. Journal of Bacteriology 2008; 190: 6148-6152.
  • 35. Margosch D, Ehrmann M, Buckow R, Heinz V, Vogel R, Ga¨nzle M. High-Pressure- Mediated Survival of Clostridium Botulinum and Bacillus amyloliquefaciens endospores at high temperature. Applied and Environmental Microbiology 2006; 72: 3476-3481.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8f0553c-bfc3-41e0-ac2b-6ef5c5aa29dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.