PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Combining multivariate statistical analysis to shed light on distribution and interaction of halogens in two economic ports along Red Sea Coast in Egypt

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mabahiss Bay and Safaga Bay are two important ports along the Red Sea coast of Egypt. The present study is the first to monitor halogen concentrations in these two ports. Certain halogens (F, Cl, Br and I) in coastal waters and sediments exhibited different behaviors. Fluoride (1.92–8.31 mg/L and 0.34–1.24 mg/g), chloride (20.76–22.68 g/L and 0.38–8.31 mg/g), bromide (95.90–151.84 mg/l and 6.66–50.61 mg/g), and iodide (2.77–39.19 μg/L and 1.71–3.76 μg/g) appeared in the seawater and sediments of Mabahiss Bay, respectively. In Safaga Bay, F, Cl, Br and I yielded ranges of (1.80–10.15 mg/L and 0.14–0.74 mg/g), (21.47–22.57 g/L and 0.68–1.42 mg/g), (15.98–146.51 mg/L and 6.13–74.59 mg/g) in seawater and sediments, respectively. In Mabashis Bay exclusively, the bromide and iodide levels in seawater increased significantly, and the sediments were vice versa. The average fluoride value in the two ports' seawater was higher than that in the unpolluted Mediterranean Sea. In contrast, the average bromide content in Mabahiss Bay seawater exceeded the Mediterranean Sea level. The seawater chloride content of the two ports was within the Mediterranean seawater's value, but the iodide concentration was lower than that of the unpolluted seawater. The application of different multivariate statistical techniques showed that halogen's distribution and halogen's geochemical characteristics control interaction in each region, ground flux, and proximity to human sources.
Czasopismo
Rocznik
Strony
103--106
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • National Institute of Oceanography and Fisheries, NIOF, Egypt
  • National Institute of Oceanography and Fisheries, NIOF, Egypt
  • National Institute of Oceanography and Fisheries, NIOF, Egypt
Bibliografia
  • 1. Abd El Wahab, M., Melegy, A., Hela, S., 2011. Distribution and enrichment of heavy metals in recent sediments of Safaga Bay. Egypt. Mar. Georesources Geotechnol. 29, 364-375. https://doi.org/10.1080/1064119X.2011.586014
  • 2. Abdel Ghani, S.A., El Zokm, G., Shobier, A., Othman, T.,Shreadah, M., 2013. Metal pollution in surface sediments of Abu-Qir Bay and Eastern Harbour of Alexandria. Egypt Egypt. J. Aquat. Res. 39 (1), 1-12. https://doi.org/10.1016/j.ejar.2013.03.001
  • 3. Abou El-Anwar, E.A., Mekky, H.S., Abdel Wahab, W., 2019. P2 O5 —F-U Characterization and Depositional Environment of Phosphatic Rocks for the Duwi Formation, Qussier — Safaga Region, Red Sea Coast. Egypt. Egypt. J. Chem. 62 (12), 2213-2228. https://doi.org/10.21608/ejchem.2019.11366.1728
  • 4. APHA-AWWA-WPCF (American Public Health Association), 1999. Standard Methods for the Examination of Water and Waste Water, 20th edn., American Publ. Health Assoc., Washington, DC, USA.
  • 5. Abouhend, A.S., El-Moselhy, Kh.M., 2015. Spatial and seasonal variations of heavy metals in water and sediments at the Northern Red Sea Coast. Am. J. Water Resour. 3 (3), 73-85. https://doi.org/10.12691/ajwr-3-3-2
  • 6. Aspila, K.I., Agemian, H., Chau, A.S.Y., 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101, 187-197. https://doi.org/10.1039/AN9760100187
  • 7. Attia, O.E.A., Abu Khadra, A.M., Nawwar, A.H., Radwan, G.E., 2012. Impacts of human activities on the sedimentological and geochemical characteristics of Mabahiss Bay, North Hurghada, Red Sea. Egypt. Arab. J. Geosci. 5, 481-499. https://doi.org/10.1007/s12517-010-0193-3
  • 8. Attia, O.E.A., Ghrefat, H., 2013. Assessing heavy metal pollution in the recent bottom sediments of Mabahiss Bay, North Hurghada, Red Sea. Egypt. Environ. Monit. Assess. 185, 9925-9934. https://doi.org/10.1007/s10661-013-3302-4
  • 9. Bahafzullah, A., Fayetf, L.A., Kazi, A., Al-Saify, M., 1993. Classification and distribution of the Red Sea coastal Sabkhas near Jeddah-Saudi Arabia. Carbonates Evaporites 8 (1), 23-38. https://doi.org/10.1007/BF03175160
  • 10. Balázs, H., Opara-Nadib, O., Beesea, F., 2005. A simple method for measuring the carbonate content of soil. Soil. Sci. Soc. Am. J. 69, 1066-1068. https://doi.org/10.2136/sssaj2004.0010
  • 11. Brescia, F., Arents, J., Meislich, H., Amos, T., 1975. Fundamental of Chemistry: A Modern Introduction, 3rd edn. Academic Press, Inc., New York. 114
  • 12. Dehbandi, R., Moore, F., Keshavarzi, B., 2017. Provenance and geochemical behavior of fluorine in the soils of an endemic fluorosis belt, central Iran. J. African Earth Sci. 129, 56-71. https://doi.org/10.1016/j.jafrearsci.2016.12.016
  • 13. El-Geziry, T.M., Dabbous, A.S., Abdallah, A.M., 2020. General pattern of sea level in Safaga and Qusseir Harbours on the Egyptian Red Sea coast. Arab. J. Geosci. 13, 436. https://doi.org/10.1007/s12517-020-05447-y
  • 14. El-Metwally, M.E.A., Madkour, A.G., Fouad, R.R., Mohamedein, L.I., Nour Eldine, H.A., Dar, M.A., El-Moselhy, Kh.M., 2017. Assessment the leachable heavy metals and ecological risk in the surface sediments inside the Red Sea ports of Egypt. Int. J. Mar. Sci. 7 (23), 214-228. https://doi.org/10.5376/IJMS.2017.07.0023
  • 15. El Nemr, A., El-Said, G.F., 2017. Assessment and ecological risk of heavy metals in sediment and molluscs from the M.editerranean Coast. Water Environ. Res. 89 (3), 195-210. https://doi.org/10.2175/106143016x14798353399458
  • 16. El-Said, G.F., 2005. Distribution of Fluoride Content in Some Localities of Egyptian Coastal Water Ph.D. Thesis. Chemistry Department, Faculty of Science, University of Alexandria, Alexandria, Egypt.
  • 17. El-Said, G.F., El-Sikaily, A., 2013. Chemical composition of some seaweed from Mediterranean Sea coast. Egypt. Environ. Monit. Assess. 185, 6089-6099. https://doi.org/10.1007/s10661-012-3009-y
  • 18. El-Said, G.F., 2013. Bioaccumulation of key metals and other contaminants by seaweeds from the Egyptian Mediterranean Sea Coast in relation to human health risk. Hum. Ecol. Risk Assess. 19, 1285-1305. https://doi.org/10.1080/10807039.2012.708253
  • 19. El-Said, G.F., El-Sadaawy, M.M., Moneer, A.A., Shaltout, N.A., 2015. The effect of fluoride on the distribution of some minerals in the surface water of an Egyptian lagoon at the Mediterranean Sea.Egypt. J. Aquat. Res. 41 (1), 31-39. https://doi.org/10.1016/j.ejar.2015.02.004
  • 20. El-Said, G.F., Shaltout, N.A., Moneer, A.A., El-Sadaawy, M.M., Morsy, A.M.H., 2016a. The precipitation of fluoride, calcium and magnesium minerals from Egyptian Mediterranean Sea coast inrelation to discharged waters. Desalin. Water Treat. 57, 2113-2124. https://doi.org/10.1080/19443994.2014.979243
  • 21. El-Said, G.F., Khalil, M.Kh., Draz, S.E.O., 2016b. Anomalous distribution of fluoride and phosphorus forms in surface sediments along eastern Egyptian Mediterranean Sea coast. Environ. Sci. Pollut. Res. 23, 14240-14253. https://doi.org/10.1007/s11356-016-6552-1
  • 22. El-Said, G.F., El Zokm, G.M., El Sayed, A.A., El Ashmawy, A.A., Shreadah, M.A., 2020. Anomalous fluctuation of halogens in relation to the pollution status along Lake Mariout. Egypt. J. Chem. Article ID 8102081, 1-20. https://doi.org/10.1155/2020/8102081
  • 23. El-Said, G.F., El-Sadaawy, M.M., Shaltout, N.A., Moneer, A.A., 2021. Spatiotemporal distribution of some dissolved salts and minerals in Lake Edku connected to Mediterranean Sea: in relation to different pollutant inputs. Environ. Monit. Assess. 193, 155. https://doi.org/10.1007/s10661-021-8935-0
  • 24. El-Sarraf, W.M., Masoud, M.S., Harfoush, A.A., El-Said, G.F., 2003. Fluoride distribution and the effect of some ions along Alexandria coastal Mediterranean seawater of Egypt. J. Environ. Sci. 15 (5), 639-646.
  • 25. El Zokm, G.M., Ibrahim, M.I.A., Mohamed, L.A., El-Mamoney, M., 2020a. Critical geochemical insight into Alexandria coast with special reference to diagnostic ratios (TOC/TN & Sr/Ca) and heavy metals ecotoxicological hazards. Egypt. J. Aquat. Res. 46 (1), 27-33. https://doi.org/10.1016/j.ejar.2019.12.006
  • 26. El Zokm, G.M., Ismail, M.M., El-Said, G.F., 2020b. Halogen content relative to the chemical and biochemical composition of fifteen marine macro and micro algae: nutritional value, energy supply antioxidant potency, and health risk assessment. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-11596-0
  • 27. Fahmy, M.A., 2003. Water quality in Red Sea coastal waters (Egypt): Analysis of spatial and temporal variability. Chem. Ecol. 19 (1), 67-77. https://doi.org/10.1080/0275754031000087074
  • 28. Fahmy, M.A., Abdel Fattah, L.M., Abdel-Halim, A.M., Aly-Eldeen, M.A., Abo-El-Khair, E.M., Ahdy, H.H., Hemeilly, A., Abu El-Soud, A., Shreadah, M.A., 2016. Evaluation of the quality for the Egyptian Red Sea Coastal waters during 2011-2013. J. Environ. Prot. 7, 1810-1834. https://doi.org/10.4236/jep.2016.712145
  • 29. Folk, R.L., 1974. Petrology of Sedimentary Rocks. University of Texas, Austin, TX, USA. Grasshoff, K., 1976. Methods of Seawater Analysis. Verlag Chemie, Weinkeim and New York, 317 pp.
  • 30. Harlove, D.E., Aranovich, L., 2018. The Role of Halogens in Terrestrial and Extraterrestrial. In: Geochemical Processes, Surface, Crust, and Mantle. Springer Geochemistry, Springer International Publishing AG, Switzerland, 1030 pp.
  • 31. Ichikuni, M., 1979. Uptake of fluoride by aragonite. Chem. Geol. 27 (3), 207-214. https://doi.org/10.1016/0009-2541(79)90039-1
  • 32. Jeffery, P.G., 1975. Chemical Methods of Rock Analysis, secondedn., Pergamon Press, New York, NY, USA.
  • 33. Jones, B.F., Vengosh, A., Rosenthal, E., Yechieli, Y., 1999. Chapter 3: Geochemical Investigations. In: Bear, J., Cheng, A.H.-D., Sorek, S., Ouaza, D., Herrera, I. (Eds.), Seawater Intrusion in Coastal Aquifers-Concepts, Methods and Practices, Theory and Applications of Transport in Porous Media, Volume 14. Springer Science+Business Media, Dordrecht, The Netherlands, 625 pp.
  • 34. Kot, F.S., 2009. Boron sources, speciation and its potential impact on health. Rev. Environ. Sci. Biotechnol. 8, 3-28. https://doi.org/10.1007/s11157-008-9140-0
  • 35. Liteplo, R., Gomes, R., Howe, P., Malcom, H., 2002. Environmental Health Criteria 227. World Health Organization (WHO), Geneva.
  • 36. Mansour, A.M., Askalany, M.S., Madkour, H.A., Assran, B.B., 2013. Assessment and comparison of heavy-metal concentrations in marine sediments in view of tourism activities in Hurghada area, northern Red Sea. Egypt. Egypt. J. Aquat. Res. 39, 91-103. https://doi.org/10.1016/j.ejar.2013.07.004
  • 37. Mansour, A.M., Nawar, A.H., Madkour, H.A., 2011. Metal pollution in marine sediments of selected harbours and industrial areas along the Red Sea coast of Egypt. Ann. Naturhist. Mus. Wien Ser. A113, 225-244.
  • 38. Manual of Methods of Analysis of Foods, 2005. Fruit and Vegetable Products: Directorate General of Health Services. Ministry of Health and Family Welfare, Government of India, New Delhi, 57 pp.
  • 39. Masoud, M.S., El-Said, G.F., 2011. Behavior of some chloride, carbonate, phosphate, sulphate and borate additive salt—NaCl aqueous solution systems in the absence and presence of NaF. Desalin. Water Treat. 29, 1-9. https://doi.org/10.5004/dwt.2011.1169
  • 40. Millero, F.J., Feistel, R., Wright, D.G., McDougal, T.J., 2008. The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res. Pt. I 55, 50-72. https://doi.org/10.1016/j.dsr.2007.10.001
  • 41. Mohamed, A.A., 1999. Natural Pigments and Iodine Contents in Certain Marine Macroalgae. Helwan University, Egypt, 202 pp.
  • 42. Molnia, B.F., 1974. A rapid and accurate method for the analysis of calcium carbonate in small samples. J. Sed. Petrol. 44 (2), 589-590.
  • 43. Moneer, A.A., El-Sadawy, M.M., El-Said, G.F., Radwan, A.A., 2012. Boron human health risk assessment relative to the environmental pollution of Lake Edku. Egypt. J. King Saud Univ. (JKAU): Mar. Sci. 23 (2), 41-55. https://doi.org/10.4197/Mar.23-2.3
  • 44. Muramatsu, Y., Wedepohl, K.H., 1998. The distribution of iodine in the earth’s crust. Chem. Geol. 147 (3-4), 201-216. https://doi.org/10.1016/S0009-541(98)00013-8
  • 45. Nour, H.E., El-Sorogy, A., Abdel-Wahab, M., Almadani, S., Alfaifi, H., Youssef, M., 2018. Assessment of sediment quality using different pollution indicators and statistical analyses, Hurghada area, Red Sea coast, Egypt. Mar. Pollut. Bull. 133, 808-813. https://doi.org/10.1016/j.marpolbul.2018.06.046
  • 46. Nour, H.E., Nouh, E., 2020. Comprehensive pollution monitoring of the Egyptian Red Sea coast by using the environmental indicators. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-09079-3
  • 47. Ries, J.B., 2010. Review: Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795-2849. https://doi.org/10.5194/bg-7-2795-2010
  • 48. Saenger, P., 1972. A rapid spectrophotometric method for the determination of bromine in seawater and in the ash of marine algae. Helgoländer wissenschaftliche Meeresuntersuchungen 23 (1), 32-37. https://doi.org/10.1007/BF01616309
  • 49. Sawicka, J.E., Jørgensen, B.B., Bruchert, V., 2012. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences 9, 3425-3435. https://doi.org/10.5194/bg-9-3425-2012
  • 50. Schmidt, B., Ponath, S., Hannemann, J., Voßnacker, P., Sonnenberg, K., Christmann, M., Riedel, S., 2020. In situ synthesis and applications for polyinterhalides based on BrCl. Chem. Eur. J. 26, 15183-15189. https://doi.org/10.1002/chem.202001267
  • 51. Selim, A.E.M., 2007. Sedimentation Threats to Red Sea Corals : An Ecological Study of Reefs in the Hurghada region. Egypt, Ph.D. Thesis. Hull University, England, 207 pp.
  • 52. Shapiro, O.H., Kartvelishvily, E., Kramarsky-Winter, E., Vardi, A., 2018. Magnesium-rich nanometric layer in the skeleton of Pocillopora damicornis with possible involvement in fibrous aragonite deposition. Front. Mar. Sci. 5, Article 246. https://doi.org/10.3389/fmars.2018.00246
  • 53. Soliman, N.F., El Zokm, G.M., Okbah, M.A., 2018. Risk assessment and chemical fractionation of selected elements in surface sediments from Lake Qarun, Egypt using modified BCR technique. Chemosphere 191, 262-271. https://doi.org/10.1016/j.chemosphere.2017.10.049
  • 54. Strickland, J.D.H., Parsons, T.R., 1972. A Practical Handbook of Sea-water Analysis, second ed., Fisheries Research Board of Canada. Bulletin 167, Ottawa, Canada, 311 pp.
  • 55. Tokatli, C., Çiçek, A., Emiroğlu, Ö., Arslan, N., Köse, E., Dayıoğlu, H., 2014. Statistical approaches to evaluate the aquatic ecosystem qualities of a significant mining area: Emet stream basin (Turkey). Environ. Earth Sci. 71, 2185-2197. https://doi.org/10.1007/s12665-013-2624-4
  • 56. Worden, R.H., 1996. Controls on halogen concentrations in sedimentary formation waters. Mineral. Mag. 60 (399), 259-274 https://doi.org/10.1180/minmag.1996.060.399.02
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8ebff34-7944-4fa9-a5e6-1045f3626878
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.