PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

U-Pb geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting of Gandab volcanic rocks, northeastern Iran

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper addresses U-Pb geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting in the Gandab volcanic rocks. The Gandab volcanic rocks belong to the Sabzevar zone magmatic arc (northeastern Iran). Petrographically, all the studied volcanic rocks indicate porphyritic textures with phenocrysts of plagioclase, K-feldespar, hornblende, pyroxene, and magnetite which are embedded in a fine to medium grained groundmass. As well, amygdaloidal, and poikilitic textures are seen in some rocks. The standard chemical classifications show that the studied rocks are basaltic trachy andesite, trachy andesite, trachyte, and trachy dacite. Major elements reveal that the studied samples are metaluminous and their alumina saturation index varies from 0.71 to 1.02. The chondrite-normalized rare earth element and mantle-normalized trace element patterns show enrichment in light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). As well they show a slightly negative Eu anomaly (Eu/Eu* = 0.72 – 0.97). The whole-rock geochemistry of the studied rocks suggests that they are related to each other by fractional crystallization. LA-MC-ICP-MS U-Pb analyses in zircon grains from two volcanic rock samples (GCH-119 and GCH-171) gave ages ranging of 5.47 ± 0.22 Ma to 2.44 ± 0.79 Ma, which corresponds to the Pliocene period. In four samples analysed for Sr and Nd isotopes 87Sr/86Sr ratios range from 0.704082 to 0.705931 and εNd values vary between +3.34 and +5. These values could be regarded to as representing mantle derived magmas. Taking into account the comparing rare earth element (REE) patterns, an origin of the parental magmas in enriched lithospheric mantle is suggested. Finally, it is concluded that Pliocene Gandab volcanic rocks are related to the post-collision environment that followed the Neo-Tethys subduction.
Wydawca
Czasopismo
Rocznik
Strony
269--286
Opis fizyczny
Bibliogr. 63 poz., rys.
Twórcy
  • Department of Geology, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Geology, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Geology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
autor
  • Department of Geosciences, Geobiotec Research Unit, University of Aveiro, 3810-193 Aveiro, Portugal
Bibliografia
  • 1. Alavi M, 1991. Tectonic map of the Middle East, scale 1:2,900,000. Geological Survey of Iran.
  • 2. Aydin F, Karsli O and Chen B, 2008. Petrogenesis of the Neogene alkaline volcanic with implications for post collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos104: 249–266, .
  • 3. Baker J, Peate D, Waight T and Meyzen C, 2004. Pb isotopic analysis of standards and samples using a Pb-207-Pb-204 double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chemical Geology211: 275–303, .
  • 4. Berberian M and King GCP, 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences18: 210–265, .
  • 5. Black LP and Gulson BL, 1978. The age of the Mud tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics3: 227–232.
  • 6. Black LP, Kamos L, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C, 2003. TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology200: 155–170, .
  • 7. Black LP, Kamo SL, Allen CM, Davis DW, Aleninikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS and Foudoulis C, 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, IDTIMS, ELA-ICP-MS, and oxygen isotope documentation for a series of zircon standards. Chemical Geology205: 115–140, .
  • 8. Boynton WVZ, 1984. Geochemistry of the rare earth elements: meteorite studies. Rare Earth Element Geochemistry (Henderson, P., ed.). Elsevier, Amsterdam, 63–114.
  • 9. Bradshaw TK and Smith EI, 1994. Polygenetic Quaternary volcanism at Crater Flat, Nevada. Journal of Volcanology and Geothermal Research63: 165–182, .
  • 10. Cameron BI, Walker JA, Carr MJ, Patino LC, Matias O, Feigenson MD, 2003. Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. Journal of Volcanology and Geothermal Research119: 21–50, .
  • 11. Entezari Harsini A, Mazaheri SA, Saadat S and Santos JF, 2016. Geochemistry, petrology, and mineralization in volcanic rocks located in south Neyshabour, NE Iran. Journal of Mining and Environment8: 139–154, .
  • 12. Esmaiely D, Nédéléc A, Valizadeh MV, Moore F and Cotton J, 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran), with reference to tin mineralization. Journal of Asian Earth Sciences25: 961–980, .
  • 13. Fang N and Niu Y, 2003. Late Palaeozoic ultramafic lavas in Yunnan, SW China, and their geodynamic significance. Journal of Petrology44: 141–158. .
  • 14. Furman T and Graham D, 1999. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos48: 237–262, .
  • 15. Ghalamghash J, Bouchez JL, Vosoughi-Abedini M and Nédélec A, 2009. The Urumieh Plutonic Complex (NW Iran): Record of the geodynamic evolution of the Sanandaj – Sirjan zone during Cretaceous times – Part II: Magnetic fabrics and plate tectonic reconstruction. Journal of Asian Earth Sciences36: 303–317, .
  • 16. Halpin JA, Jensen T, McGoldrick P, Meffre S, Berry RF, Everard JL, Calver CR, Thompson J, Goemann K and Whittaker JM, 2014. Authigenic monazite and detrital zircon dating from the Proterozoic Rocky Cape Group, Tasmania: Links to the Belt-Purcell Supergroup, North America. Precambrian Research250: 50–67, .
  • 17. Hatzfeld D and Molnar P, 2010. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus, and geodynamic implications. Reviews of Geophysics48: RG2005, .
  • 18. Hofmann AW, 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385: 219–229, .
  • 19. Hoskin PWO and Schaltegger U, 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Manchar, J.M., Hoskin, P.W.O. (Eds.), Zircon: Reviews of Mineralogy and Geochemistry53: 27–62, .
  • 20. Irber W, 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica at Cosmochimica Acta63: 489–508, .
  • 21. Irvine TN and Baragar WRA, 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences8: 523–548, .
  • 22. Jackson SE, Pearson NJ, Griffin WL and Belousova EA, 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology211: 47–69, .
  • 23. Janous’ek V, Bowes DR, Rogers G, Farrow CM and Jelinak E, 2000. Modelling diverse processes in the petrogenesis of a composite batholith: the Central European Hercynides. Journal of Petrology41: 511–543, .
  • 24. Kemp AIS and Hawkesworth CJ, 2003. Granitic perspectives on the generation and secular evolution of the continental crust. In: Rudnick, R.L. (Ed.), the Crust. Treatise on Geochemistry, 3. Elsevier, Pergamon, pp. 349–410.
  • 25. Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ, 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science315: 980–983, .
  • 26. Ketchum KY, Heaman LM, Bennett G and Hughesa DJ, 2013. Age, petrogenesis and tectonic setting of the Thessalon volcanic rocks, Huronian Supergroup, Canada. Precambrian Research233: 144–172, .
  • 27. Kosler J, 2001. Laser-ablation ICPMS study of metamorphic minerals and processes. In: Sylvester P. J. ed. Laser-ablation-ICPMS in the earth sciences; principles and applications. Mineralogical Association of Canada Short Course Handbook29: 185–202.
  • 28. Li X, Long WG, Li QL, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H, 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age.Geostandards and Geoanalytical Research34: 117–134.
  • 29. Li XH, Li WX, Wang XC, Li QL, Liu Y and Tang GQ, 2009. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China:in situ zircon Hf-O isotopic constraints. Science in China, Series52: 1262–1278.
  • 30. Li XH, Zhou HW, Liu Y, Le CY, Sun M and Chen ZH, 2000. Shoshonitic intrusive suite in SE Guangxi: petrology and geochemistry. Chinese Sciences Bulletin45: 653–659, .
  • 31. Li XW, Mo XX, Yu XH, Ding Y, Huang XF, Wei P and He WY, 2013. Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn-collision? Lithos172–173: 158–174, .
  • 32. Liu H, Qiu JS, Luo QH, Xu XS, Ling WL and Wang DZ, 2002. Petrogenesis of the Mesozoic potash-rich volcanic rocks in the Luzong basin, Anhui Province: geochemical constrains. Geochemica31: 129–140.
  • 33. López-Moro FJ, López Plaza M and Romer RL, 2012. Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, Western Spain. International Journal of Earth Sciences101: 1273–1298, .
  • 34. López-Moro FJ and López-Plaza M, 2004. Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos72: 19–44, .
  • 35. Martin H, 1987. Petrogenesis of Archean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology28: 921–953.
  • 36. Mazhari SA, Amini S, Ghalamghash J and Bea F, 2011. Petrogenesis of granitic unit of Naqadeh complex, Sanandaj-Sirjan Zone, NW Iran. Arabian Journal of Geosciences4: 59–67, .
  • 37. McDonough WF and Sun SS, 1995. The composition of the Earth. Chemical Geology 120: 223–253, .
  • 38. Middlemost EAK, 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews37: 215–244, .
  • 39. Muller D, Rock NMS and Groves DI, 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic setting: a pilot study. Mineralogy and Petrology46: 259–286, .
  • 40. Naderi Mighan N, 2000. Geological map of Kadkan, scale 1:100,000. Geological Survey of Iran.
  • 41. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A and Maas R, 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems11: 1525–2027, .
  • 42. Pazirandeh M, 1973. Distribution of volcanic rocks in Iran and a preliminary discussion of their relationship to tectonics.Bulletin Volcanologique37: 573–585.
  • 43. Pearce JA, 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, M.J. (Eds.), Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, Cheshire, UK, pp. 230–250.
  • 44. Rossetti F, Nasrabady M, Vignaroli G, Theye T, Gerdes A, Razavi MH and Vaziri HM, 2010. Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran.Terra Nova22: 26–34, .
  • 45. Ruttner A and Stöcklin J, 1967. Geological map of Iran, scale 1:100,000, Geological Survey of Iran. Science Reviews37: 215–224.
  • 46. Saadat S and Stern ChR, 2016. Distribution and geochemical variations among paleogene volcanic rocks from the north-central Lut block, eastern Iran. Iranian Journal of Earth Sciences8: 1–24.
  • 47. Saadat S, Karimpour MH and Stern ChR, 2010. Petrochemical characteristics of Neogene and Quaternary alkali olivine basalts from the western margin of the Lut block, eastern Iran. Iranian Journal of Earth Sciences2: 87–106.
  • 48. Sengor AMC, 1990. A new model for the Late Paleozoic-Mesozoic tectonic evolution of Iran and implications for Oman. In: Robertson, A.H.F., Searle, M.P., Ries, A.C., (eds.). The Geology and Tectonics of the Oman Region. Geological Society of London Special Publication49: 797–831.
  • 49. Shafaii Moghadam HS, Corfu F, Chiaradia M, Stern RJ and Ghorbani G, 2014. Sabzevar Ophiolite, NE Iran: Progress from embryonic oceanic lithosphere into magmatic arc constrained by new isotopic and geochemical data. Lithos 210–211: 224–241,.
  • 50. Shand SJ, 1943. The eruptive rocks: 2nd edition, John Wiley, New York, 444p.
  • 51. Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ, 2008. Plesovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249: 1–35, .
  • 52. Smith EI, Sánchez A, Walker JD and Wang K, 1999. Geochemistry of mafic magmas in the Hurricane volcanic field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. Journal of Geology107: 433–448, .
  • 53. Spies O, Lensch G, Mihem A, 1983. Geochemistry of the postophiolitic Tertiary volcanics between Sabzevar and Quchan (NE Iran). Rep. Geological Survey of Iran51: 247–266.
  • 54. Steiger RH and Jäger E, 1977. Subcommision on geochronology: convention in the use of decay-constants in geo- and cosmochemistry. Earth and Planetary Science Letters36: 359–362, .
  • 55. Sun SS and McDonough WF, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. IIn: Saunders, A.D., Norry, M.J. (Editors). Magmatism in the Ocean Basins, Geological Society, London, Special Publications 42: 313–345.
  • 56. Tarkian M, Bock WD and Neumann M, 1983. Geology and mineralogy of the Cu-Ni-Co-U ore deposits at Talmessi and Meeskani, central Iran. Tschermaks mineralogische und petrographische Mitteilungen32: 111–133, .
  • 57. Taylor SR and McLennan SM, 1985. The continental crust: Its composition and evolution. Oxford, 311pp.
  • 58. Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, Deng W, 1996. Post-collision shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology37: 45–71, .
  • 59. Villa IM, De Bièvre P, Holden NE, Renne PR, 2015. IUPAC-IUGS recommendation on the half life of 87Rb. Geochimica et Cosmochimica Acta164: 382–385, .
  • 60. Whalen JB, Currie KL and Chappell BW, 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology95: 407–419, .
  • 61. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W, 1995. 3 Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and REE Analyses. Geostandards Newsletter19: 1–23, .
  • 62. Yang JH, Chung SI, Zhai MG and Zhou XH, 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dykes from the Jiaodong peninsula, China: evidence for veinplus-peridotite melting in the lithospheric mantle. Lithos73: 145–160, .
  • 63. Yang JH, Wu FY, Wilde SA, Xie LW, Yang YH and Liu XM, 2007. Tracing magma mixing in granite genesis, in situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology153: 177–190, .
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8deb4ce-02b9-4cb8-a9b0-64bebcd88785
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.